
36-752 Advanced Probability Overview Spring 2018

11. Characteristic Functions and CLT

Instructor: Alessandro Rinaldo

Associated reading: Sec 7.1, 7.3 of Ash and Doléans-Dade; Sec 3.3, 3.4 of Durrett.

Overview

In this set of lecture notes we present the Central Limit Theorem. There are many different
ways to prove the CLT. We will follow the common approach using characteristic functions.
Characteristic functions are essentially Fourier transformations of distribution functions,
which provide a general and powerful tool to analyze probability distributions.

1 Characteristic Functions

Recall that in order to check convergence in distribution for a sequence of random quantities
Xn, we need to show convergence of Ef(Xn) for all bounded continuous function f . We
have shown that when (X ,B) = (IR1,B1), it suffices to check convergence of Fn(x) for
all continuity points x of F . For the case in which (X ,B) = (IRp,Bp), there is a useful
technique for determining if a sequence of random vectors converges in distribution. It is
based on a characterization of distributions by something simpler than the means of all
bounded continuous functions. The means of a special collection of bounded continuous
functions, namely {exp(it⊤x) : t ∈ IRp}, are enough to characterize a distribution. From
here on in the notes, i is one of the complex square-roots of −1.

Definition 1 (Characteristic Function). The function φX(t) = E exp(it⊤X) is called the

characteristic function (cf) of X.

(Mathematicians will recognize the cf as the Fourier transform of fX , the density function
of X.) Every distribution on IRp has a cf regardless of whether moments exist. Recall
from complex analysis that exp(iu) = cos(u) + i sin(u). So, we see that exp(it⊤x) is indeed
bounded as a function of x for each t.

Example 2 (Normal distribution). Let fX(x) = exp(−x2/2)/
√
2π be the density of X.
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Then

φX(t) =
1√
2π

󰁝
exp(itx− x2/2)dx

=
1√
2π

󰁝
exp

󰀕
−1

2
[x− it]2 − t2

2

󰀖
dx

= exp(−t2/2).

Example 3 (Uniform distribution). Let f(x) = 1/2 for −1 < x < 1. Then

φ(t) =
1

2

󰁝 1

−1

exp(itx)dx =
exp(it)− exp(−it)

2it
=

sin(t)

t
.

Example 4 (Cauchy distribution). Let fX(x) = [π(1 + x2)]−1. Then φX(t) = exp(−|t|).
To prove this requires contour integration.

Remark 5 (Continuity). Of course all cf ’s are continuous by the dominated convergence

theorem. Since | exp(it⊤x) − exp(iu⊤x)| ≤ 2 for all t, u, x, we can pass the limit as u → t

under the integral in
󰁕
[exp(it⊤x)− exp(iu⊤x)]dµX(x) to get 0 for the limit.

Remark 6 (Smoothness). The smoothness of the cf is related to the existence of moments.

Now, suppose that X is a random variable with finite mean. We can write

| exp(ix)− 1|2 = | cos(x) + i sin(x)− 1|2 = 2− 2 cos(x) = 2

󰁝 x

0

sin(t)dt ≤ 2

󰁝 x

0

tdt = x2.

This implies that | exp(ix)− 1| ≤ |x| for all x. Clearly, | exp(ix)− 1| ≤ 2 for all x also. So

| exp(ix)− 1| ≤ min{2, |x|}. (1)

This implies that [exp(ixt)−1]/t is bounded by a µX-integrable function |x|. By the dominated

convergence theorem, we can pass the limit as t → 0 under the integral to get that φ′(0)

exists and equals iE(X). With a bit more effort similar results hold if higher moments exist:

φ(k)(0) = ikEXk.

Some basic properties of cf’s are summarized below.

Proposition 7 (Basic properties of cf). All cf ’s have the following properties:

1. φ(0) = 1, |φ(t)| ≤ 1,

2. φ(−t) = φ(t) (complex conjugate),

3. |φ(t+ h)− φ(t)| ≤ E|eihX − 1| (uniform continuity),
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4. φaX+b(t) = eitbφX(at).

The next result gives a sufficient condition for φ(t) to be a cf.

Theorem 8 (Polya’s Criterion). Let φ be continuous, real, nonnegative, symmetric, de-

creasing and convex on [0,∞), such that φ(0) = 1, limt→∞ φ(t) = 0, then φ is a characteristic

function.

Proposition 9 (Cf of sum of independent r.v.’s). If X and Y are independent, then

φX+Y (t) = φX(t)φY (t).

The remaining theorems about convergence in distribution are

• the inversion/uniqueness theorem that says that each cf corresponds to a unique dis-
tribution,

• the continuity theorem that says that Xn
D→ X if and only if φXn(t) → φX(t) for all t

(the “only if” direction being trivial), and

• the central limit theorem that says that certain normalized sums of independent (not
necessarily identically distributed) random variables with finite variance converge in
distribution to a standard normal distribution.

1.1 Inversion formula and uniqueness

Theorem 10 (Inversion and uniqueness). Let φ be the cf for the probability P on

(IRp,Bp). Let A be a rectangular region of the form

A = {(x1, . . . , xp) : aj ≤ xj ≤ bj for all j},

where aj < bj for all j and P (∂A) = 0. For each T > 0, let

BT = {(t1, . . . , tp) : −T ≤ tj ≤ T for all j}.

Then

P (A) = lim
T→∞

1

(2π)p

󰁝

BT

p󰁜

j=1

󰀗
exp(−itjaj)− exp(−itjbj)

itj

󰀘
φ(t)dt1 · · · dtp.

Distinct probability measures have distinct cf ’s.

The proof relies on the following interesting result which we state without proof. The proof
is outlined in Exercise 1.7.5 of Durrett.
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Lemma 11.

lim
T→∞

󰁝 T

−T

sin(ct)

t
dt =

󰀻
󰀿

󰀽

π if c > 0,

0 if c = 0,

−π if c < 0.

(2)

Because dt/t is invariant measure with respect to scale changes on (0,∞), the integral doesn’t
depend on |c| for c ∕= 0.

Sketch of Proof, Theorem 10. Basically, replace φ(t) by
󰁕 󰁔p

j=1 exp(itjxj)dP (x), change
the order of integration, pass the limit inside the integral over x, combine the two products
into one, rewrite exp(−itjcj) in terms of sines and cosines (for cj ∈ {xj −aj, xj − bj}), notice
that the cosine terms integrate to 0 over tj, and apply the above formula to the sine terms.
When xj is between aj and bj, the limit of the integral over tj yields π − (−π) = 2π. When
xj is outside of [aj, bj], the limit yields either π − π or −π − (−π), both 0.

Proof: [Proof of Theorem 10] Apply Fubini’s theorem to write

󰁝

BT

p󰁜

j=1

󰀗
exp(−itjaj)− exp(−itjbj)

itj

󰀘
φ(t)dt1 · · · dtp (3)

=

󰁝

IRp

󰁝

BT

p󰁜

j=1

󰀗
exp(itj[xj − aj])− exp(itj[xj − bj])

itj

󰀘
dt1 · · · dtjdµ(x).

We can do this beacuse the integrand is bounded by
󰁔p

j=1 |bj−aj| according to Equation (1)
and the set over which we are integrating has finite product measure. Rewrite the jth factor
in the integrand on the right-side of (3) as

cos(tj[xj − aj])− cos(tj[xj − bj]) + i sin(tj[xj − aj])− i sin(tj[xj − bj])

itj
.

Since the integration over tj is from −T to T and {cos(tj[xj − aj]) − cos(tj[xj − bj])}/tj is
bounded and an odd function, its integral is 0. We rewrite the right side of (3) as

󰁝

IRp

󰁝

BT

p󰁜

j=1

󰀗
sin(tj[xj − aj])

tj
− sin(tj[xj − bj])

tj

󰀘
dt1 · · · dtjdµ(x). (4)

Define

gT (x) =

󰁝

BT

p󰁜

j=1

󰀗
sin(tj[xj − aj])

tj
− sin(tj[xj − bj])

tj

󰀘
dt1 · · · dtp

=

p󰁜

j=1

󰁝 T

−T

sin(tj[xj − aj])

tj
− sin(tj[xj − bj])

tj
dtj.
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This function is uniformly bounded for all T and x because Lemma 11 implies that

sup
T,c

󰀏󰀏󰀏󰀏
󰁝 T

−T

sin(ct)

t
dt

󰀏󰀏󰀏󰀏 < ∞ .

Hence by DCT the limit as T → ∞ of the integral in Equation (4) equals
󰁕
limT→∞ gT (x)dµ(x).

If we define

ψa,b(x) =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

0 if x < a,
π if x = a,
2π if a < x < b,
π if x = b,
0 if x > b,

then Lemma 11 says that limT→∞ gT (x) =
󰁔p

j=1 ψaj ,bj(xj), which equals (2π)p for x ∈ int(A)

and equals 0 for x ∈ A
C
. Since µ(∂A) = 0, we have

1

(2π)p

󰁝

IRp

lim
T→∞

gT (x)dµ(x) = µ(A) .

At most countably many hyperplanes perpendicular to the coordinate axes can have positive
µ probability. So, the rectangular regions A with µ(∂A) = 0 form a π-system that generate
Bp. It follows from the inversion formula that φ1 = φ2 implies µ1 = µ2. That is, the
characteristic function determines the distribution.

The following theorem allows us to simplify some future proofs by doing only the p = 1 case.

Lemma 12 (Cramér-Wold). Let X and Y be p-dimensional random vectors. Then X and

Y have the same distribution if and only if α⊤X and α⊤Y have the same distribution for

every α ∈ IRp.

Proof: We know that X and Y have the same distribution if and only if φX(t) = φY (t)
for every t ∈ IRp. This is true if and only if φX(sα) = φY (sα) for all α ∈ IRp and all
s ∈ IR. But φX(sα) is the cf of α⊤X (as a function of s) and φY (sα) is the cf of α⊤Y . So,
φX(sα) = φY (sα) for all α ∈ IRp and all s ∈ IR if and only if α⊤X and α⊤Y have the same
distribution for every α ∈ IRp.

If the characteristic function is integrable, a continuous density exists. We will not prove
this result.

Proposition 13. If φ is the cf of the cdf F on (IR,B1) and if φ is integrable, then F has a

density

f(x) =
1

2π

󰁝 ∞

−∞
exp(−itx)φ(t)dt, (5)

which is continuous.
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1.2 The continuity theorem

The connection between characteristic functions and convergence in distribution is the fol-
lowing.

Theorem 14 (Continuity theorem). Let {Pn}∞n=1 be a sequence of probabilities on (IRp,Bp),

and let P be another probability. Let φn be the cf for Pn, and let φ be the cf for P . Then

Pn
D→ P if and only if limn→∞ φn(t) = φ(t) for all t ∈ IRp.

Proof: The “only if” direction follows directly from the definition of convergence in distri-
bution since exp(itx) is a bounded continuous function of x for all t. For the “if” direction,
start with p = 1, and construct the following bound

1

u

󰁝 u

−u

[1− φn(t)]dt =

󰁝 ∞

−∞

1

u

󰁝 u

−u

[1− exp(itx)]dtdPn(x)

= 2

󰁝 ∞

−∞

󰀕
1− sin(ux)

ux

󰀖
dPn(x)

≥ 2

󰁝

{x:|x|≥2/u}

󰀕
1− 1

|ux|

󰀖
dPn(x)

≥ Pn({x : |x| ≥ 2/u}),

where the first equality is justfied by Fubini’s theorem. Let 󰂃 > 0. Since φ(0) = 1 and φ
is continuous, there exists u such that

󰁕 u

−u
[1 − φ(t)]dt/u < 󰂃. Since φn converges to φ, the

dominated convergence theorem implies that
󰁕 u

−u
[1 − φn(t)]dt/u < 2󰂃 for sufficiently large

n, say for n > N . Let a ≥ 2/u be such that Pn({x : |x| > a}) < 2󰂃 for n = 1, . . . , N .
Then Pn({x : |x| > a}) < 2󰂃 for all n and the sequence {Pn}∞n=1 is tight. For p > 1,
apply this same reasoning to each coordinate distribution to piece together the necessary
compact set to show that the sequence of distributions is tight. By Helly-Bray theorem,
there exists a subsequence {Pnk

}∞k=1 that converges in distribution. By the “only if” part of
the theorem, the cf’s for this subsequence converge to φ. The only distribution with cf φ is

P (Theorem 10), hence Pnk

D→ P . Since every convergent subsequence converges to P , the

last claim in Helly-Bray says that, Pn
D→ P .

Example 15. For each j, let Yj have a uniform distribution on the interval [−1, 1] and let

Xn =
󰁴

3
n

󰁓n
j=1 Yj. Then the cf of Xn is

φn(t) =

󰀳

󰁃
sin

󰀓
t
󰁳

3/n
󰀔

t
󰁳

3/n

󰀴

󰁄

n

.

We can write sin(t) = t− t3/6 + o(t3) so that, for each t,

sin
󰀓
t
󰁳

3/n
󰀔

t
󰁳

3/n
= 1− t2

2n
+ o(1/n),
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as n → ∞. It follows easily that limn→∞ φn(t) = exp(−t2/2). This is the cf of the standard

normal distribution.

The following two results are useful in proving convergence in distribution.

Corollary 16. If limn→∞ φn(t) exists for all t and is continuous at 0, then the limit is a cf,

and the distributions converge to the distribution with that cf.

The continuity at 0 was all that was needed to establish that the sequence of distributions
was tight. Another corollary (thanks to Cramér and Wold) is the following

Corollary 17. If {Xn}∞n=1 is a sequence of p-dimensional random vectors and X is a random

vector, then Xn
D→ X if and only if α⊤Xn

D→ α⊤X for all α ∈ IRp.

2 Central Limit Theorem

Theorem 18 (Lindeberg-Feller central limit theorem). Let {rn}∞n=1 be a sequence of

integers. For each n = 1, 2, . . ., let Xn,1, . . . , Xn,rn be independent random variables with Xn,k

having mean 0 and finite nonzero variance σ2
n,k. Define σ

2
n =

󰁓rn
k=1 σ

2
n,k and Sn =

󰁓rn
k=1 Xn,k.

Assume that, for every 󰂃 > 0,

lim
n→∞

1

σ2
n

rn󰁛

k=1

E
󰀅
X2

n,k1(|Xn,k| ≥ 󰂃σn)
󰀆
= 0. (6)

Then Sn/σn converges in distribution to the standard normal distribution.

The proof of Theorem 18 works by applying the continuity theorem 14. We must show that
the cf of Sn/σn converges to exp(−t2/2) for all t. The proof has two (lengthy) steps. One is
to approximate the cf φn,k of each Xn,k/σn by 1− t2σ2

n,k/(2σ
2
n). The other is to approximate

exp(−t2/2) by
󰁔rn

k=1[1− t2σ2
n,k/(2σ

2
n)].

Also, notice that Xn,k is divided by σn in all formulas in the statement of the theorem.
Hence, without loss of generality, we can assume that σn = 1 for all n. We do this in the
proof, given at the end of this set of lecture notes.

Example 19 (iid CLT). If X1, X2, . . ., are iid with mean 0 and variance σ2, then let rn = n

and Xn,k = Xk for all n and all k ≤ n. Then σ2
n = nσ2 and

1

σ2
n

n󰁛

k=1

E
󰀅
X2

n,k1(|Xn,k| ≥ 󰂃σn)
󰀆
=

1

σ2
E
󰀅
X2

11(|X1| ≥ 󰂃
√
nσ)

󰀆
→ 0,

by DCT.
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Example 20 (Lyapounov CLT). Instead of assuming Equation (6), we assume that there

exists δ > 0 such that E[|Xn,k|2+δ] < ∞ and that

lim
n→∞

rn󰁛

k=1

1

σ2+δ
n

E
󰀅
|Xn,k|2+δ

󰀆
= 0. (7)

Since |Xn,k|2 ≤ |Xn,k|2+δ/[󰂃δσδ
n] when |Xn,k| > 󰂃σn, we have that the sum in Equation (6) is

bounded by
1

σ2
n

rn󰁛

k=1

E
󰀅
X2

n,k1(|Xn,k| > 󰂃σn)
󰀆
≤ 1

󰂃δ

rn󰁛

k=1

1

σ2+δ
n

E
󰀅
|Xn,k|2+δ

󰀆
.

Hence, if Equation (7) holds, so does Equation (6).

Example 21. Let Y1, Y2, . . . be independent Poisson random variables with the parameter of

Yk being 1/k. Then let Xn,k = Yk − 1/k for all n and all k ≤ n. Now, σ2
n = Ln =

󰁓n
k=1 1/k.

For δ = 1, E(X3
n,k) = 1/k also. Hence

E|Xn,k|3 ≤ E

󰀣󰀗
Xn,k +

1

k

󰀘3󰀤
=

1

k
+

3

k2
+

1

k3
≤ 5

k
.

The sum on the left of Equation (7) is bounded by 5/
√
Ln, which goes to 0. So, [

󰁓n
k=1 Yk −

Ln]/
√
Ln converges in distribution to standard normal. Notice that Ln = log(n) + cn where

cn is bounded. By Theorem 18, [
󰁓n

k=1 Yk − log(n)]/
󰁳

log(n) converges in distribution to

standard normal also.

Proposition 22. If the Xn,k are uniformly bounded and if limn→∞ σ2
n = ∞, then Equa-

tion (6) will hold.

Example 23 (Bernoulli distribution). If Xn,k has a Bernoulli distribution with parameter

1/k and rn = n, the condition holds. The theorem does not apply, however, if the Bernoulli

parameter is 1/k2. Indeed, if the Bernoulli parameter is 1/k2,
󰁓n

k=1 Xn,k converges almost

surely according to the basic L2 convergence theorem. As another example, if rn = n and

the Bernoulli parameter is k/(n + 1) for k = 1, . . . , n, then σ2
n = n(n + 2)/[6(n + 1)]. In

fact, rn could be as small as n1/2+󰂃 for 0 < 󰂃 ≤ 1/2, and the theorem would still apply. This

example cannot be described as a single sequence as all of the distributions of Xn,k change

as n changes.

Example 24 (Delta method). Suppose that Y1, Y2, . . . are iid with common mean η and

common variance σ2. Let Xn = 1
n

󰁓n
j=1 Yj. Then

√
n(Xn − η)

D→ Z, where Z has a normal

distribution with mean 0 and variance σ2. If g is a function with derivative g′ at η, then√
n[g(Xn)−g(η)] converges in distribution to a normal distribution with mean 0 and variance

[g′(η)]2σ2.
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A multivariate central limit theorem exists for iid sequences, and the proof combines the
univariate central limit theorem together with the method of the Cramér-Wold lemma 12
and the Continuity theorem 14.

Theorem 25 (Multivariate Central Limit Theorem). Let {Xn}∞n=1 be a sequence of iid

random vectors with common mean vector η and common covariance matrix Σ. Let Xn be

the average of the first n of these vectors. Then Zn =
√
n(Xn − η) converges in distribution

to multivariate normal with zero mean vector and covariance matrix Σ.

Proof: By Corollary 17, all we need to show is that, for all α, α⊤Zn
D→ N(0,α⊤Σα). For

every vector α, let Yk = α⊤Xk which are iid with common mean α⊤η and common variance
α⊤Σα. Let σ2

n = nα⊤Σα. If α⊤Σα = 0, then Pr(Yk = α⊤η) = 1 and Pr(α⊤Zn = 0) = 1

for all n, which means that α⊤Zn
D→ N(0,α⊤Σα). For the rest of the proof, assume that

α⊤Σα > 0. Theorem 18 says that

nα⊤Xn − nα⊤η

σn

=
α⊤Zn√
α⊤Σα

D→ N(0, 1).

Multiply by
√
α⊤Σα to get that α⊤Zn

D→ N(0,α⊤Σα).

A multivariate central limit theorem also exists for general independent sequences, but it
is very cumbersome to state. (Imagine replacing all of the σ2’s and σ2

n’s in Theorem 18 by
matrices.)

Proof of Lindeberg-Feller CLT

To prove the central limit theorem, we will need to be able to approximate arbitrary charac-
teristic functions. First, by various integrations by parts and reasoning similar to that which
achieved Equation (1), we can obtain the following bound.

Lemma 26. 󰀏󰀏󰀏󰀏exp(ix)−
󰀗
1 + ix− x2

2

󰀘󰀏󰀏󰀏󰀏 ≤ min
󰀋
|x|3, x2

󰀌
.

In terms of the cf of a random variable X with mean 0 and variance σ2, this equation says

that 󰀏󰀏󰀏󰀏φX(t)−
󰀗
1− t2σ2

2

󰀘󰀏󰀏󰀏󰀏 ≤ E
󰀅
min{|Xt|3, (Xt)2}

󰀆
. (8)

Notice that only a second moment is required in order for the mean on the far right to exist.
In order to apply a bound like this to a sum like Sn, we need to approximate a product of
cf’s by a product of approximations. The following simple results are useful. Their proofs
are contained in another course document.
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Proposition 27. Let z1, . . . , zm and w1, . . . , wm be complex numbers with modulus at most

1. Then 󰀏󰀏󰀏󰀏󰀏

m󰁜

k=1

zk −
m󰁜

k=1

wk

󰀏󰀏󰀏󰀏󰀏 ≤
m󰁛

k=1

|zk − wk|

Proof: We shall use induction. The result is trivially true when m = 1. Assume that it is
true for m = m0. For m = m0 + 1, we have

󰀏󰀏󰀏󰀏󰀏

m0+1󰁜

k=1

zk −
m0+1󰁜

k=1

wk

󰀏󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

m0+1󰁜

k=1

zk − wm0+1

m󰁜

k=1

zk + wm0+1

m󰁜

k=1

zk −
m0+1󰁜

k=1

wk

󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏

m󰁜

k=1

zk

󰀏󰀏󰀏󰀏󰀏 |zm0+1 − wm0+1|+

󰀏󰀏󰀏󰀏󰀏

m󰁜

k=1

zk −
m󰁜

k=1

wk

󰀏󰀏󰀏󰀏󰀏 |wm0+1|

≤
m󰁛

k=1

|zk − wk|+ |zm0+1 − wm0+1|.

Proposition 28. For complex z, | exp(z)− 1− z| ≤ |z|2 exp(|z|).

Proof: Write exp(z)− 1− z =
󰁓∞

k=2 z
k/k!. Since k! < (k + 2)! for k ≥ 0, we have

󰀏󰀏󰀏󰀏󰀏

∞󰁛

k=2

zk

k!

󰀏󰀏󰀏󰀏󰀏 ≤ |z|2
∞󰁛

k=0

|z|k
(k + 2)!

≤ |z|2 exp(|z|).

Proof: [Proof of Theorem 18] Without loss of generality, we assume that σn = 1 for all n.
The cf of Sn is

φn(t) =
rn󰁜

k=1

φn,k(t).

According to Equation (8), for each n, k, and t,

󰀏󰀏󰀏󰀏φn,k(t)−
󰀗
1−

t2σ2
n,k

2

󰀘󰀏󰀏󰀏󰀏 ≤ E
󰀅
min{|Xn,kt|3, (Xn,kt)

2}
󰀆

≤ E
󰀅
|tXn,k|31(|Xn,k| < 󰂃)

󰀆
+ E

󰀅
|tXn,k|21(|Xn,k| ≥ 󰂃)

󰀆

≤ 󰂃|t|3σ2
n,k + t2E

󰀅
|Xn,k|21(|Xn,k| ≥ 󰂃)

󰀆
.

It follows that

rn󰁛

k=1

󰀏󰀏󰀏󰀏φn,k(t)−
󰀗
1−

t2σ2
n,k

2

󰀘󰀏󰀏󰀏󰀏 ≤ 󰂃|t|3 + t2
rn󰁛

k=1

E
󰀅
|Xn,k|21(|Xn,k| ≥ 󰂃)

󰀆
.
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The last sum goes to 0 as n → ∞ according to Equation (6). Since 󰂃 is arbitrary, we have

lim
n→∞

rn󰁛

k=1

󰀏󰀏󰀏󰀏φn,k(t)−
󰀗
1−

t2σ2
n,k

2

󰀘󰀏󰀏󰀏󰀏 = 0. (9)

In order to apply Proposition 27, we need σ2
n,k to all be small. For each 󰂃 > 0, we have

σ2
n,k = E

󰀅
|Xn,k|21(|Xn,k| ≤ 󰂃)

󰀆
+ E

󰀅
|Xn,k|21(|Xn,k| > 󰂃)

󰀆

≤ 󰂃2 + E
󰀅
|Xn,k|21(|Xn,k| > 󰂃)

󰀆
.

It follows from Equation (6) that

lim
n→∞

max
k

σ2
n,k = 0. (10)

Next, fix t ∕= 0 and notice that for n sufficiently large 0 < t2σ2
n,k/2 < 1 for all k simultane-

ously. It follows from Proposition 27 and Equation (9) that

lim
n→∞

󰀏󰀏󰀏󰀏󰀏φn(t)−
rn󰁜

k=1

󰀗
1−

t2σ2
n,k

2

󰀘󰀏󰀏󰀏󰀏󰀏 = 0. (11)

Since σ2
n = 1, we have that exp(−t2/2) =

󰁔rn
k=1 exp(−t2σ2

n,k/2). For n large enough so that
t2σ2

n,k/2 < 1 for all k write

󰀏󰀏󰀏󰀏󰀏exp
󰀕
−t2

2

󰀖
−

rn󰁜

k=1

󰀗
1−

t2σ2
n,k

2

󰀘󰀏󰀏󰀏󰀏󰀏 ≤
rn󰁛

k=1

󰀏󰀏󰀏󰀏exp
󰀕
−
t2σ2

n,k

2

󰀖
− 1 +

t2σ2
n,k

2

󰀏󰀏󰀏󰀏

≤ t4

4

rn󰁛

k=1

σ4
n,k exp

󰀕
t2

2

󰀖

≤ t4

4
max

k
σ2
n,k exp

󰀕
t2

2

󰀖
, (12)

where the first inequality follows from Proposition 27, the second follows from Proposition 28,
and the third follows from the fact that σ2

n = 1. Finally, the last term in Section 2 goes to
0 according to Equation (10). Combining this with Equation (11) says that limn→∞ φn(t) =
exp(−t2/2).
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