
36-752 Advanced Probability Overview Spring 2018

3. Limit Theorems and the Standard Machinery

Instructor: Alessandro Rinaldo

Associated reading: Sec 1.6 and 2.2 of Ash and Doléans-Dade; Sec 1.5 and A.4 of Durrett.

1 Basic Limit Theorems and Applications

One of the famous limit theorems is the following.

Theorem 1 (Fatou’s lemma). Let {fn}∞n=1 be a sequence of nonnegative measurable func-

tions. Then ∫
lim inf

n
fndµ ≤ lim inf

n

∫
fndµ.

Proof: Let f(ω) = lim infn→∞ fn(ω). Because∫
fdµ = sup

finite simple φ ≤ f

∫
φdµ,

we need only prove that, for every finite simple φ ≤ f ,∫
φdµ ≤ lim inf

n→∞

∫
fndµ.

Let φ ≤ f be finite and simple, and let ε > 0. For each n, define

An = {ω ∈ Ω : fk(ω) ≥ (1− ε)φ(ω), for all k ≥ n}.

Since (1 − ε)φ(ω) ≤ f(ω) for all ω with strict inequality wherever either side is positive,⋃∞
n=1An = Ω and An ⊆ An+1 for all n.∫

fndµ ≥
∫
An

fndµ ≥ (1− ε)
∫
An

φdµ. (1)

Let the canonical representation of φ be
∑m

i=1 ciICi
. Then, for all n.∫

An

φdµ =
m∑
i=1

ciµ(Ci ∩ An).
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Because the An’s form an increasing sequence whose union is Ω, limn→∞ µ(Ci ∩An) = µ(Ci)
for all i. Taking the lim infn of both sides of Equation (1) yields

lim inf
n

∫
fndµ ≥ (1− ε)

m∑
i=1

ciµ(Ci) = (1− ε)
∫
φdµ.

Since this is true for every ε > 0,

lim inf
n→∞

∫
fndµ ≥

∫
φdµ.

The first of the two most useful limit theorems is the following.

Theorem 2 (Monotone convergence theorem). Let {fn}∞n=1 be a sequence of measurable

nonnegative functions, and let f be a measurable function such that fn ≤ f and limn→∞ fn =

f . Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof: Since fn ≤ f for all n,
∫
fndµ ≤

∫
fdµ for all n. Hence

lim inf
n→∞

∫
fndµ ≤ lim sup

n→∞

∫
fndµ ≤

∫
fdµ.

By Fatou’s lemma,
∫
fdµ ≤ lim infn→∞

∫
fndµ.

Exercise 3. Why is it called the “monotone” convergence theorem?

Exercise 4. Suppose that fn is integrable for each n and supn
∫
fndµ < ∞. Show that, if

fn ↑ f , then f is integrable and
∫
fndµ→

∫
fdµ.

Exercise 5. Assume the sequence of functions fn is defined on a measure space (Ω,F , µ)

such that µ(Ω) < ∞. Further, suppose that the fn are uniformly bounded and that fn → f

uniformly. Show that
∫
fndµ→

∫
fdµ.

We are now in a position to prove properties such as linearity and change of variable formula,
using the “Standard Machinery”.
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2 The Standard Machinery

2.1 Linearity of Integral

Theorem 6 (Linearity of Integrals). If
∫
fdµ and

∫
gdµ are defined and they are not

both infinite and of opposite signs, then
∫

[f + g]dµ =
∫
fdµ+

∫
gdµ.

Proof: If f, g ≥ 0, then by monotone approximation, there exist sequences of nonnegative
simple functions {fn}∞n=1 and {gn}∞n=1 such that fn ↑ f and gn ↑ g. Then (fn + gn) ↑ (f + g)
and

∫
[fn + gn]dµ =

∫
fndµ+

∫
gndµ by linearity of integrals of simple functions. The result

now follows from the monotone convergence theorem. For integrable f and g, note that
(f + g)+ + f− + g− = (f + g)− + f+ + g+. What we just proved for nonnegative functions
implies that ∫

(f + g)+dµ+

∫
f−dµ+

∫
g−dµ

=

∫
[(f + g)+ + f− + g−]dµ

=

∫
[(f + g)− + f+ + g+]dµ

=

∫
(f + g)−dµ+

∫
f+dµ+

∫
g+dµ.

Rearranging the terms in the first and last expressions gives the desired result. If both f
and g have infinite integral of the same sign, then it follows easily that f + g has infinite
integral of the same sign. Finally, if only one of f and g has infinite integral, it also follows
easily that f + g has infinite integral of the same sign.

For proving theorems about integrals, there is a common sequence of steps that is often called
the standard machinery. The standard machinery essentially entails the following steps: (1)
prove the claim about the integral for non-negative simple functions; (2) use the monotone
convergence theorem to show that the claim holds for non-negative measurable functions
and (3) use the decomposition f = f+ − f− to deal with general measurable functions. We
illustrate this machinery in the next few results.

2.2 Change of variable

The first illustration is the measure-theoretic version of the change-of-variables formula.

Lemma 7 (Change of Variable). Let (Ω,F , µ) be a measure space and let (S,A) be a

measurable space. Let f : Ω→ S be a measurable function. Let ν be the measure induced on
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(S,A) by f from µ. (See the Induced Measure Lemma.) Let g : S → IR be A/B1 measurable.

Then ∫
gdν =

∫
g(f)dµ, (2)

if either integral exists.

Proof: First, assume that g = IA for some A ∈ A. Then Equation (2) becomes ν(A) =
µ(f−1(A)), which is the definition of ν. Next, if g is a nonnegative simple function, then
Equation (2) holds by linearity of integrals. If g is a nonnegative function, then use the
monotone convergence theorem and a sequence of nonnegative simple functions converging
to g from below to see that Equation (2) holds. Finally, for general g, Equation (2) holds if
either g+ or g− is integrable.

Lemma 7 has a widely-used corollary.

Corollary 8 (Law of the unconscious statistician). If X : Ω→ S is a random quantity

with distribution µX and if f : S → IR is measurable, then E[f(X)] =
∫
fdµX .

2.3 Density Functions

Another useful application of monotone convergence is the following.

Theorem 9. Let (Ω,F , µ) be a measure space, and let f : Ω → IR
+0

be measurable. Then

ν(A) =
∫
A
fdµ is a measure on (Ω,F).

Exercise 10. Prove Theorem 9.

If µ is σ-finite and if f is finite a.e. [µ], then ν in Theorem 9 is σ-finite.

What goes wrong with the conclusion to Theorem 9 if f is integrable but not necessarily
nonnegative? If f can take negative values then ν(A) =

∫
A
fdµ might be negative. Let

A = {ω : f(ω) < 0}. Suppose that µ(A) > 0. Write A =
⋃∞
n=1An, where An = {ω : f(ω) <

−1/n}. If µ(A) > 0, then there exists n such that µ(An) > 0. (This argument is used often
in proving probability results.) Then

−ν(A) =

∫
IA(−f)dµ ≥

∫
IAn(−f)dµ ≥ 1

n
µ(An) > 0.

Here is another application of the standard machinery.

Theorem 11 (Density Function). Assume the same conditions as Theorem 9. Integrals

with respect to ν can be computed as
∫
gdν =

∫
fgdµ, if either exists.
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Proof: We prove the result in four stages. First, assume that g is a indicator IA of some
set A ∈ F . Then the definition of ν says that

∫
gdν = ν(A) =

∫
IAfdµ. Second, assume that

g is a nonnegative simple function. The result holds for g by linearity of integrals. Third,
assume that g is nonnegative. Approximate g from below by nonnegative simple functions
{gn}∞n=1. Then

∫
gndν =

∫
gnfdµ for each n and the monotone convergence theorem says

that the left side converges to
∫
gdν and the right side converges to

∫
gfdµ. Finally, if g is

measurable, write g = g+ − g− (the positive and negative parts). Then
∫
g+dν =

∫
g+fdµ

and
∫
g−dν =

∫
g−fdµ. We see that

∫
gdν exists if and only if

∫
gfdµ exists, and if either

exists they are equal.

Definition 12. The function f in Theorem 9 is called the density of ν with respect to µ.

Example 13 (Probability density functions). Consider a continuous random variable

X having a density f . That is,

Pr(X ≤ a) =

∫ a

−∞
f(x)dx.

Then the distribution of X, defined by µX(B) = Pr(X ∈ B) for B ∈ B1, satisfies

µX(B) =

∫
B

fdλ,

where λ is Lebesgue measure. That is, the probability density functions of the usual contin-

uous distributions that you learned about in earlier courses are also densities with respect to

Lebesgue measure in the sense defined above.

Example 14 (Probability mass functions). Consider a typical discrete random variable

X with mass function f , i.e., f(x) = Pr(X = x) for all x. There are at most countably

many x such that f(x) > 0. Let µX be the distribution of X. For each set B, we know that

µX(B) = Pr(X ∈ B) =
∑
x∈B

f(x).

The rightmost term in this equation is
∫
fdµ, where µ is counting measure on the range

space of X. So, f is the density of µX with respect to µ.

3 Additional Properties of Integrals

Here are some more useful properties of integrals.

Theorem 15. Let (Ω,F , µ) be a measure space. Let f and g be measurable extended real-

valued functions.
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1. If f is nonnegative and µ({ω : f(ω) > 0}) > 0, then
∫
fdµ > 0.

2. If f and g are integrable and if
∫
A
fdµ =

∫
A
gdµ for all A ∈ F , then f = g a.e. [µ].

3. If µ is σ-finite and if
∫
A
fdµ =

∫
A
gdµ for all A ∈ F , then f = g a.e. [µ].

4. Let Π be a π-system that generates F . Suppose that Ω is a finite or countable union

of elements of Π. If f and g are integrable and if
∫
A
fdµ =

∫
A
gdµ for all A ∈ Π, then

f = g a.e. [µ].

Proof: 1. Let Ac = {ω : f(ω) > c} for each c ≥ 0. Because µ(A0) > 0 and A0 =⋃∞
n=1A1/n, then there exists n such that µ(A1/n) > 0 (by the limit result on measure

of monotone sequence of sets). Since f ≥ fIA1/n
, we have

∫
fdµ ≥

∫
A1/n

fdµ. But

(1/n)IA1/n
is a simple function that is ≤ fIA1/n

and
∫

(1/n)IA1/n
dµ = n−1µ(A1/n) > 0.

It follows that
∫
fdµ > 0.

2. This will appear on a homework assignment.

3. First, assume that f and g are real-valued. Let {An}∞n=1 be disjoint elements of F such
that µ(An) < ∞ and

⋃∞
n=1An = Ω. Let Bm = {ω : |f(ω)| < m, |g(ω)| < m} for each

integer m. For each pair (n,m), fIAn∩Bm and gIAn∩Bm satisfy the conditions of the
previous part, so fIAn∩Bm = gIAn∩Bm a.e. [µ]. Let C = {ω : f(ω) 6= g(ω)}. Since

C =
∞⋃
n=1

∞⋃
m=1

[C ∩Bm ∩ An] ,

and each µ(C ∩Bm ∩ An) = 0, it follows that µ(C) = 0.

Next, suppose that f and/or g is extended real-valued. Let E = {f =∞}∆{g =∞},
the set where one function is ∞ but the other is not. If µ(E) > 0, then there is a
subset A of E such that 0 < µ(A) <∞ and one of the functions is bounded above on
A while the other is infinite. This contradicts

∫
A
fdµ =

∫
A
gdµ. A similar result holds

for −∞.

4. Define ν+
1 (A) =

∫
A
f+dµ, ν+

2 (A) =
∫
A
g+dµ, ν−1 (A) =

∫
A
f−dµ, and ν−2 (A) =

∫
A
g−dµ.

These are all finite measures according to Theorem 9. The additional condition implies
that they are all σ-finite on Π. The equality of the integrals implies that ν+

1 + ν−2 =
ν−1 + ν+

2 for all sets in Π. The uniqueness theorem implies that ν+
1 + ν−2 = ν−1 + ν+

2 for
all sets in F . Hence, the condition of part 2 hold and the result is proven. �

The condition about unions in part 4 of the above theorem holds for the π-systems of the
form {(a, b]} or {(−∞, b]}.
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Corollary 16. If µ is σ-finite and ν is related to µ as in Theorem 9, then the density of ν

with respect to µ is unique, a.e. [µ].

There is an interesting characterization of σ-finite measures in terms of integrals.

Theorem 17. Let (Ω,F , µ) be a measure space. Then µ is σ-finite if and only if there exists

a strictly positive integrable function.

Exercise 18. Prove Theorem 17.

In general, given another measure ν on (Ω,F), can we find such a density function? Of
course, the existence of such a density function requires some special relationship between ν
and the “base measure” µ.

4 Other Limit Theorems

The other major limit theorem is the following.

Theorem 19 (Dominated convergence theorem). Let {fn}∞n=1 be a sequence of mea-

surable functions, and let f and g be measurable functions such that fn → f a.e. [µ], |fn| ≤ g

a.e. [µ], and
∫
gdµ <∞. Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof: We have −g ≤ fn ≤ g a.e. [µ], hence

g + fn ≥ 0, a.e. [µ],

g − fn ≥ 0, a.e. [µ],

lim
n→∞

[g + fn] = g + f a.e. [µ],

lim
n→∞

[g − fn] = g − f a.e. [µ].

It follows from Fatou’s lemma and Theorem 6 that∫
[g + f ]dµ ≤ lim inf

n→∞

∫
[g + fn]dµ

=

∫
gdµ+ lim inf

n→∞

∫
fndµ,∫

fdµ ≤ lim inf
n→∞

∫
fndµ.
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Similarly, it follows that∫
[g − f ]dµ ≤ lim inf

n→∞

∫
[g − fn]dµ

=

∫
gdµ− lim sup

n→∞

∫
fndµ,∫

fdµ ≥ lim sup
n→∞

∫
fndµ.

Together, these imply the conclusion of the theorem.

Example 20. Let µ be a finite measure. Then limits and integrals can be interchanged

whenever the functions in the sequence are uniformly bounded.

An alternate version of the dominated convergence theorem is the following.

Proposition 21. Let {fn}∞n=1, {gn}∞n=1 be sequences of measurable functions such that |fn| ≤
gn, a.e. [µ]. Let f and g be measurable functions such that limn→∞ fn = f and limn→∞ gn = g,

a.e. [µ]. Suppose that limn→∞
∫
gndµ =

∫
gdµ <∞. Then, limn→∞

∫
fndµ =

∫
fdµ.

The proof is the same as the proof of Theorem 19, except that gn replaces g in the first three
lines and wherever g appears with fn and a limit is being taken.

For finite measure spaces (i.e. (Ω,F , µ) with µ(Ω) <∞), the minimal condition that guar-
antees convergence of integrals is uniform integrability .

Definition 22 (Uniform Integrability). A sequence of integrable functions {fn}∞n=1 is

uniformly integrable (with respect to µ) if limc→∞ supn
∫
{ω:|fn(ω)|>c} |fn|dµ = 0.

Theorem 23. Let µ be a finite measure. Let {fn}∞n=1 be a sequence of integrable functions

such that limn→∞ fn = f a.e. [µ]. Suppose that {fn}∞n=1 is uniformly integrable. Then

limn→∞
∫
fndµ =

∫
fdµ.

If the fn’s in Theorem 23 are nonnegative and integrable and fn → f , then limn→∞
∫
fndµ =∫

fdµ implies that {fn}∞n=1 are uniformly integrable. We will not use this result, however.

5 Absolute Continuity and R-N Derivative

Definition 24 (Absolute Continuity). Let ν and µ be measures on the space (Ω,F). We

say that ν � µ (read ν is absolutely continuous with respect to µ) if for every A ∈ F ,

µ(A) = 0 implies ν(A) = 0.

That is, ν � µ if and only if every measure 0 set under µ is also a measure 0 set under ν.

8



Example 25. Let (Ω,F , µ) be a measure space. Let f be a nonnegative function, and define

ν(A) =
∫
A
fdµ. Then ν is a measure and ν � µ. If f <∞ a.e. [µ] and if µ is σ-finite, then

ν is σ-finite as well.

Example 26. Let µ1 and µ2 be measures on the same space. Let µ = µ1 +µ2. Then µi � µ

for i = 1, 2.

Absolute continuity can be interpreted as “continuity of measures”.

Proposition 27. Let ν and µ be measures on the space (Ω,F). Suppose that, for every

ε > 0, there exists δ such that for every A ∈ F , µ(A) < δ implies ν(A) < ε. Then ν � µ.

Conversely, if ν � µ and ν, µ are finite, then for every ε > 0, there exists δ such that for

every A ∈ F , µ(A) < δ implies ν(A) < ε.

A concept related to absolute continuity is singularity.

Definition 28 (Mutually singular measures). Two measures µ and ν on the same space

(Ω,F) are (mutually) singular (denoted µ ⊥ ν) if there exist disjoint sets Sµ and Sν such

that µ(SCµ ) = ν(SCν ) = 0.

Example 29. Let f and g be nonnegative functions such that fg = 0 a.e. [µ]. Define

ν1(A) =
∫
A
fdµ and ν2(A) =

∫
A
gdµ. Then ν1 ⊥ ν2.

The main theoretical result on absolute continuity is the Radon-Nikodym theorem which
says that, in the σ-finite case, all absolute continuity is of the type in Example 25.

Theorem 30 (Radon-Nikodym). Let µ and ν be σ-finite measures on the space (Ω,F).

Then ν � µ if and only if there exists a nonnegative measurable f such that ν(A) =
∫
A
fdµ

for all A ∈ F . The function f is unique a.e. [µ].

One proof of this result is given at the end of this set of lecture notes. Another proof is given
later after we introduce conditional expectation.

Definition 31 (R-N Derivative). The function f in Theorem 30 is called a Radon-

Nikodym derivative of ν with respect to µ. It is denoted dν/dµ. Each such function is

called a version of dν/dµ.

From the proof of Theorem 30 we know that if ν is not absolutely continuous with respect
to µ, we can decompose it into an absolutely continuous part and a singular part.

Theorem 32 (Lebesgue Decomposition). Let ν and µ be two σ-finite measures on

(Ω,F). Then there exists two σ-finite measures ν0 and ν1 such that ν = ν0 + ν1, ν0 � µ,

ν1 ⊥ µ.
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The uniqueness of Radon-Nikodym derivatives is only a.e. [µ]. If f = dν/dµ, then every
measurable function that equals f a.e. [µ] could also be called dν/dµ. All of these functions
are called versions of the Radon-Nikodym derivative.

Definition 33 (Equivalent Measures). If µ � ν and ν � µ, we say that µ and ν are

equivalent.

If µ and ν are equivalent, then
dµ

dν
=

1

dν

dµ

.

If ν � µ� η, then the chain rule for R-N derivatives says

dν

dη
=
dν

dµ

dµ

dη
.
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Radon-Nikodym Theorem

Theorem 30. (Radon-Nikodym) Let µ and ν be σ-finite measures on the space (Ω,F).
Then ν � µ if and only if there exists a nonnegative measurable f such that ν(A) =

∫
A
fdµ

for all A ∈ F . The function f is unique a.e. [µ].

The proof of this result relies upon the theory of signed measures.

Definition 34 (Signed Measure). Let (Ω,F) be a measurable space. Let η : F → IR. We

call η a signed measure if

• η(∅) = 0,

• for every sequence {Ak}∞k=1 of mutually disjoint elements of F , η(
⋃∞
k=1Ak) =

∑∞
k=1 η(Ak).

• η takes at most one of the two values ±∞.

Example 35. Let µ1 and µ2 be measures on the same space such that at most one of them

is infinite. Then µ1 − µ2 is a signed measure.

Example 36. Let f be integrable with respect to µ, and define η(A) =
∫
A
fdµ. Then f is a

finite signed measure. If the integral of f is merely defined, but not finite, then
∫
A
fdµ is a

signed measure.

The nice thing about signed measures is that they divide up nicely into positive and negative
parts just like measurable functions.

Theorem 37 (Hahn and Jordan decompositions). Let η be a signed measure on (Ω,F).

Then there exists a set A+ such that every subset A of A+ has η(A) ≥ 0 and every subset

B of A+C has η(B) ≤ 0. Also, there exist finite mutually singular measures η+ and η− such

that η = η+ − η−.

Proof: With out loss of generality, assume that η does not take the value ∞. As a result,
supA∈F η(A) < ∞. Let α = supA∈F η(A). Let limn→∞ η(An) = α. The key step of the
proof is to find a set A+ such that η(A+) = α. Although the sequence {

⋃n
i=1 Ai}

∞
n=1 is

monotone increasing, η (
⋃n
i=1 Ai) is not necessarily as large as η(An). However, the following

trick replaces
⋃n
i=1Ai by a sequence of sets whose signed measures do increase. For each

n, partition Ω using the sets A1, . . . , An and their complements. Let Cn be the union of all
of the component sets that have positive signed measure. Since the (n + 1)st partition is a
refinement of the nth partition, we see that Cn+1∩CC

n is a union of sets with positive signed
measure and

η(An) ≤ η(Cn) ≤ η
(
Cn
⋃

Cn+1

)
.

By induction, we then show that A+ =
⋂∞
m=1

⋃∞
n=mCn has η(A+) = α. The conclusions now

follow easily.
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Theorem 37 has an interesting consequence.

Lemma 38. Suppose that µ and ν are finite and not mutually singular. Then there exists

ε > 0 and a set A with µ(A) > 0 and εµ(E) ≤ ν(E) for every E ⊆ A.

Proof: For each n, let ηn = ν − (1/n)µ. Let β = ν(Ω). Let A+
n and be the set called

A+ in Theorem 37 when η is ηn. Let M = ∩∞n=1A
+C
n . Since ηn(E) ≤ 0 for every subset

of A+C
n , we have ηn(M) ≤ 0 for all n and ν(M) ≤ (1/n)µ(M). It follows that ν(M) = 0

and ν(MC) = β. Since µ and ν are not mutually singular, µ(MC) > 0 and at least one
µ(A+

n ) > 0. Let A = A+
n and ε = 1/n.

Proof: [Theorem 30] The σ-finite case follows easily from the finite case, so assume that µ
and ν are finite with ν � µ. Let G be the set of all nonnegative measurable functions g such
that

∫
E
gdµ ≤ ν(E) for all E ∈ F . Because 0 ∈ G, we know that G is nonempty. If g1 and g2

are in G, we know that {g1 ≤ g2} is measurable, hence it is easy to see that max{g1, g2} ∈ G.
Also, if gn ∈ G for all n and gn ↑ g, then the monotone convergence theorem implies that
g ∈ G. So, let α = supg∈G

∫
gdµ and let limn→∞

∫
gndµ = α. Let fn = max{g1, . . . , gn} so

that there is f such that fn ↑ f , fn ∈ G for all n, and limn→∞
∫
fndµ = α. It follows that∫

fdµ = α and f ∈ G. Define ν1(E) =
∫
E
fdµ and ν2 = ν − ν1, which is a measure since

ν1 ≤ ν. If ν2 and µ were not mutually singular, there would exist ε > 0 and a set A with
µ(A) > 0 and εµ(E) ≤ ν2(E) for all E ⊆ A. For each E ∈ F ,∫

E

(f + εIA)dµ =

∫
E

fdµ+ εµ(E ∩ A)

≤ ν1(E) + ν2(E ∩ A) ≤ ν1(E) + ν2(E) = ν(E).

Hence h = f + εIA ∈ G, but
∫
hdµ = α+ εµ(A) > α, a contradiction. It follows that ν2 and

µ are mutually singular. Hence, there exists S such that ν2(S) = µ(SC) = 0. Since ν � µ,
we have ν(SC) = 0. Because ν2 ≤ ν, we have ν2(SC) = 0 and ν2(Ω) = 0. It follows that
ν = ν1 and the proof of existence is complete. Uniqueness follows from part 3 of Theorem
21 in lecture notes set 3.
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