
36-752 Advanced Probability Overview Spring 2018

4. Product Spaces

Instructor: Alessandro Rinaldo

Associated reading: Sec 2.6 and 2.7 of Ash and Doléans-Dade; Sec 1.7 and A.3 of Durrett.

1 Random Vectors and Product Spaces

We have already defined random variables and random quantities. A special case of the
latter and generalization of the former is a random vector.

Definition 1 (Random Vector). Let (Ω,F , P ) be a probability space. Let X : Ω→ IRk be

a measurable function. Then X is called a random vector .

There arises, in this definition, the question of what σ-field of subsets of IRk should be used.
When left unstated, we always assume that the σ-field of subsets of a multidimensional real
space is the Borel σ-field, namely the smallest σ-field containing the open sets. However,
because IRk is also a product set of k sets, each of which already has a natural σ-field
associated with it, we might try to use a σ-field that corresponds to that product in some
way.

1.1 Product Spaces

The set IRk has a topology in its own right, but it also happens to be a product set. Each of
the factors in the product comes with its own σ-field. There is a way of constructing σ-field’s
of subsets of product sets directly without appealing to any additional structure that they
might have.

Definition 2 (Product σ-Field). Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Let

F1⊗F2 be the smallest σ-field of subsets of Ω1×Ω2 containing all sets of the form A1×A2

where Ai ∈ Fi for i = 1, 2. Then F1 ⊗F2 is the product σ-field.

Lemma 3. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Suppose that Ci generates Fi

and Ωi ∈ Ci for i = 1, 2. Let C = {C1 × C2 : C1 ∈ C1, C2 ∈ C2}. Then σ(C) = F1 ⊗ F2.

Furthermore, C is a π-system if both C1 and C2 are π-systems.

Proof: Because σ(C) is a σ-field, it contains all sets of the form C1 × A2 where A2 ∈ F2.
For the same reason, it must contain all sets of the form A1 × A2 for Ai ∈ Fi (i = 1, 2).
Because

(C1 × C2) ∩ (D1 ×D2) = (C1 ∩D1)× (C2 ×D2),
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we see that C is a π-system.

Example 4 (Product σ Field in Euclidean Space). Let Ωi = IR for i = 1, 2, and let F1

and F2 both be B1. Let Ci be the collection of all intervals centered at rational numbers with

rational lengths. Then Ci generates Fi for i = 1, 2 and the product topology is the smallest

topology containing C as defined in Lemma 3. It follows that F1 ⊗F2 is the smallest σ-field

containing the product topology. We call this σ-field B2.

Example 5. This time, let Ω1 = IR2 and Ω2 = IR. The product set is IR3 and the product σ-

field is called B3. It is also the smallest σ-field containing all open sets in IR3. The same idea

extends to each finite-dimensional Euclidean space, with Borel σ-field’s Bk, for k = 1, 2, . . ..

The product σ-field is also the smallest σ-field such that the coordinate projection functions
are measurable. The coordinate projection functions for a product set S1 × S2 are the
functions fi : S1 × S2 → Si (for i = 1, 2) defined by fi(s1, s2) = si (for i = 1, 2).

Infinite-dimensional product spaces pose added complications that we will not consider until
later in the course.

There are a number of facts about product spaces that we might take for granted.

Proposition 6 (Basic Properties of Product Spaces). Let (Ω1,F1) and (Ω2,F2) be

measurable spaces.

• For each B ∈ F1⊗F2 and each ω1 ∈ Ω1, the ω1-section of B, Bω1 = {ω2 : (ω1, ω2) ∈ B}
is in F2.

• If µ2 is a σ-finite measure on (Ω2,F2), then µ2(Bω1) is a measurable function from Ω1

to IR.

• If f : Ω1 × Ω2 → S is measurable, then for every ω1 ∈ Ω1, the function fω1 : Ω2 → S

defined by fω1(ω2) = f(ω1, ω2) is measurable.

• If µ2 is a σ-finite measure on (Ω2,F2) and if f : Ω1 × Ω2 → IR is nonnegative, then∫
f(ω1, ω2)µ2(dω2) defines a measurable (possibly infinite valued) function of ω1.

To prove results like these, start with product sets or indicators of product sets and then
show that the collection of sets that satisfy the results is a σ-field. Then, if necessary, proceed
with the standard machinery. For example, consider the second claim. For the case of finite
µ2, the claim is true if B is a product set. It is easy to show that the collection C of all
sets B for which µ2(Bω1) is measurable is a λ-system. Then use π-λ Theorem. Here is the
proof that the second claim holds for σ-finite measures once it is proven that it holds for
finite measures. Let {An}∞n=1 be disjoint elements of F2 that cover Ω2 and have finite µ2

measure. Define F2,n = {C ∩ An : C ∈ F2} and µ2,n(C) = µ2(An ∩ C) for all C ∈ F2. Then
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(An,F2,n, µ2,n) is a finite measure space for each n and µ2,n(Bω1) is measurable for all n and
all B in the product σ-field. Finally, notice that

µ2(Bω1) =
∞∑
n=1

µ2(Bω1 ∩ An) =
∞∑
n=1

µ2,n(Bω1),

a sum of nonnegative measurable functions, hence measurable. The standard machinery can
be used to prove the third and fourth claims. (Even though the third claim does not involve
integrals, the steps in the proof are similar to those of the standard machinery.)

Lemma 7. Let (Ωi,Fi) and (Si,Ai) be measurable spaces for i = 1, 2. Let fi : Ωi → Si be a

function for i = 1, 2. Define g(ω1, ω2) = (f1(ω1), f2(ω2)), which is a function from Ω1 × Ω2

to S1 × S2. Then fi is Fi/Ai-measurable for i = 1, 2 if and only if g is F1 ⊗ F2/A1 ⊗ A2-

measurable.

Proof: For the “only if” direction, assume that each fi is measurable. It suffices to show
that for each product set A1 ×A2 (with Ai ∈ Ai for i = 1, 2) g−1(A1 ×A2) ∈ F1 ⊗F2. But,
it is easy to see that g−1(A1 × A2) = f−1

1 (A1)× f−1
2 (A2) ∈ F1 ⊗F2.

For the “if” direction, suppose that g is measurable. Then for every A1 ∈ A1, g−1(A1×S2) ∈
F1 ⊗ F2. But g−1(A1 × S2) = f−1

1 (A1) × Ω2. The fact that f−1
1 (A1) ∈ F1 will now follow

from the first claim in Proposition 6. So f1 is measurable. Similarly, f2 is measurable.

Proposition 8. Let (Ω,F), (S1,A1), and (S2,A2) be measurable spaces. Let Xi : Ω → Si

for i = 1, 2. Define X = (X1, X2) a function from Ω to S1×S2. Then Xi is F/Ai measurable

for i = 1, 2 if and only if X is F/A1 ⊗A2 measurable.

Lemma 7 and Proposition 8 extend to higher-dimensional products as well.

1.2 Product Measures

Product measures are measures on product spaces that arise from individual measures on
the component spaces. Product measures are just like joint distributions of independent
random variables, as we shall see after we define both concepts.

Theorem 9 (Product Measure). Let (Ωi,Fi, µi) for i = 1, 2 be σ-finite measure spaces.

There exists a unique measure µ defined on (Ω1 × Ω2,F1 ⊗ F2) that satisfies µ(A1 × A2) =

µ1(A1)µ2(A2) for all A1 ∈ F1 and A2 ∈ F2.

Proof: The uniqueness will follow from the uniqueness theorem since any two such mea-
sures will agree on the π-system of product sets. For the existence, consider the measurable
function µ2(Bω1) defined in Proposition 6. For B ∈ F1 ⊗F2, define

µ(B) =

∫
µ2(Bω1)dµ1.
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It is straightforward to check that µ is a σ-finite measure. If B is a product set A1 × A2,
then Bω1 = A2 for all ω1, and

µ(B) =

∫
µ2(A2)IA1(ω1)µ1(dω1) = µ1(A1)µ2(A2).

It follows that µ is the desired measure.

Definition 10. The measure µ in Theorem 9 is called the product measure of µ1 and µ2

and is sometimes denoted µ1 × µ2.

How to integrate with respect to a product measure is an interesting question. For nonneg-
ative functions, there is a simple answer.

Theorem 11 (Fubini/Tonelli theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite mea-

sure spaces. Let f : Ω1 × Ω2 → IR be a nonnegative F1 ⊗F2/B1-measurable function. Then∫
fdµ1 × µ2 =

∫ [∫
f(ω1, ω2)µ1(dω1)

]
µ2(dω2) =

∫ [∫
f(ω1, ω2)µ2(dω2)

]
µ1(dω1). (1)

Proof: We will use the standard machinery. If f is the indicator of a set B, then all three
integrals in Equation (1) equal µ1 × µ2(B), as in the poof of Theorem 9. By linearity of
integrals, the three integrals are the same for all nonnegative simple functions. Next, let
{fn}∞n=1 be a sequence of nonnegative simple functions all ≤ f such that limn→∞ fn = f . We
have just shown that, for each n,∫

fndµ1 × µ2 =

∫ [∫
fn(ω1, ω2)µ1(dω1)

]
µ2(dω2).

For each ω2, the monotone convergence theorem says

lim
n→∞

∫
fn(ω1, ω2)µ1(dω1) =

∫
f(ω1, ω2)µ1(dω1).

Again, the monotone convergence theorem says that

lim
n→∞

∫ [∫
fn(ω1, ω2)µ1(dω1)

]
µ2(dω2) =

∫ [
lim
n→∞

∫
fn(ω1, ω2)µ1(dω1)

]
µ2(dω2).

Combining these last three equations proves that the first two integrals in Equation (1) are
equal. A similar argument shows that the first and third are equal.

Theorem 11 says that nonnegative product-measurable functions can be integrated in either
order to get the integral with respect to product measure. A similar result holds for integrable
product-measurable functions.
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Corollary 12. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure spaces. Let f : Ω1×Ω2 →
IR be a function that is integrable with respect to µ1 × µ2. Then Equation (1) holds.

The only sticky point in the proof of Corollary 12 is making sure that ∞ − ∞ occurs
with measure zero in the iterated integrals. But if ∞(−∞) occurs with positive measure for
f+(f−) in either of the iterated integrals, that iterated integral would be infinite and f+(f−)
would not be integrable.

Exercise 13. Let X be a nonnegative random variable defined on a probability space (Ω,F , P )

having distribution function F . Show that E(X) =
∫∞

0
[1− F (x)]dx.

Example 14. This example satisfies neither the conditions of Theorem 11 nor those of

Corollary 12. Let

f(x, y) =

{
x exp(−[1 + x2]y/2) if y > 0,

0 otherwise.

Then ∫
f(x, y)dx = exp(−y/2)

∫
x exp(−x2y/2)

= 0,∫
f(x, y)dy = x

∫ ∞
0

exp(−[1 + x2]y/2)dy

=
2x

1 + x2
.

The iterated integral in one direction is 0 and is undefined in the other direction.

These results extend to arbitrary finite products.

Example 15. The product of k copies of Lebesgue measure on IR1 is Lebesgue measure on

IRk. Theorem 11 and Corollary 12 give sufficient conditions under which integrals can be

performed in any desired order.

2 Independence

We shall define what it means for collections of events and random quantities to be indepen-
dent.

Definition 16 (Independence Between Collections of Sets). Let (Ω,F , P ) be a prob-

ability space. Let C1 and C2 be subsets of F . We say that C1 and C2 are independent if

P (A1 ∩ A2) = P (A1)P (A2) for all A1 ∈ C1 and A2 ∈ C2.
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Example 17. If each of C1 and C2 contains only one event, then C1 being independent of C2

is the same as those events being independent.

Definition 18 (Independence Between Random Variables/Quantities). Let (Ω,F , P )

be a probability space. Let (Si,Ai) for i = 1, 2 be measurable spaces. Let Xi : Ω → Si be

F/Ai measurable for i = 1, 2. We say that X1 and X2 are independent if the σ-field’s σ(X1)

and σ(X2) (recall the σ-field generated by functions) are independent.

Proposition 19. If C1 and C2 are independent π-systems then σ(C1) and σ(C2) are indepen-

dent.

Example 20. Let f1 and f2 be densities with respect to Lebesgue measure. Let P be defined

on (IR2,B2) by P (C) =
∫ ∫

C
f1(x)f2(y)dxdy. Then the following two σ-field’s are indepen-

dent :

C1 = {A× IR : A ∈ B1},
C2 = {IR× A : A ∈ B1}.

Also, the following two random variables are independent: X1(x, y) = x and X2(x, y) = y

(i.e., the coordinate projection functions). Indeed, Ci = σ(Xi) for i = 1, 2.

Example 21. Let X1 and X2 be two random variables defined on the same probability space

(Ω,F , P ). Suppose that the joint distribution of (X1, X2) has a density f(x, y) that factors

into f(x, y) = f1(x)f2(y), the two marginal densities. Then, for each product set A×B with

A,B ∈ B1,

Pr(X1 ∈ A,X2 ∈ B) = Pr((X1, X2) ∈ A×B)

=

∫
A

∫
B

f1(x)f2(y)dydx

=

∫
A

f1(x)dx

∫
B

f2(y)dy

= Pr(X1 ∈ A) Pr(X2 ∈ B).

So, X1 and X2 are independent. The same reasoning would apply if the two random variables

were discrete. It would also apply if one were discrete and the other continuous.

These definitions extend to more than two collections of events and more than two random
variables.

Definition 22 (Independence of Multiple Collections of Subsets). Let (Ω,F , P ) be

a probability space. Let {Ct : t ∈ T} be a collection of subsets of F . We say that the Ct’s are

(mutually) independent if, for every finite integer n ≥ 2 and no more than the cardinality

of T , and for all distinct t1, . . . , tn ∈ T , and Ati ∈ Cti for i = 1, . . . , n,

P

(
n⋂

i=1

Ati

)
=

n∏
i=1

P (Ati).
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Definition 23 (Independence of Multiple Random Variables/Quantities). Let (Ω,F , P )

be a probability space. Let {(St,At) : t ∈ T} be measurable spaces. Let Xt : Ω→ St be F/At

measurable for each t ∈ T . We say that {Xt : t ∈ T} are (mutually) independent if the

σ-field’s {σ(Xt) : t ∈ T} are mutually independent.

Theorem 24. Let (Ω,F , P ) be a probability space. Let (Si,Ai) for i = 1, 2 be measurable

spaces. Let X1 : Ω→ S1 and X2 : Ω→ S2 be random quantities. Define X = (X1, X2). The

distribution of X : Ω→ S1× S2, µX is the product measure µX1 × µX2 if and only if X1 and

X2 are independent.

Proof: For the “if” direction, suppose that X1 and X2 are independent. Then for every
product set A1 × A2,

µX(A1 × A2) = Pr(X1 ∈ A1, X2 ∈ A2) = Pr(X1 ∈ A1) Pr(X2 ∈ A2)

= µX1(A1)µX2(A2).

It follows from the uniqueness of product measure that µX is the product measure.

For the “only if” direction, suppose that µX = µX1 × µX2 . Then, for every A1 ∈ A1 and
A2 ∈ A2,

Pr(X1 ∈ A1, X2 ∈ A2) = µX(A1 × A2) = µX1(A1)µX2(A2)

= Pr(X1 ∈ A1) Pr(X2 ∈ A2).

3 Stochastic Process and Infinite Product Space

A stochastic process is an indexed collection of random quantities.

Definition 25 (Stochastic Processes). Let (Ω,F , P ) be a probability space. Let T be a

set. Suppose that, for each t ∈ T , there is a measurable space (Xt,Ft) and a random quantity

Xt : Ω→ Xt. The collection {Xt : t ∈ T} is called a stochastic process , and T is called the

index set.

The most popular stochastic processes are those for which Xt = IR for all t. Among those,
there are two very commonly used index sets, namely T = ZZ+ (sequences of random vari-
ables) and T = IR+0 (continuous-time stochastic processes). There are, however, many more
general index sets than these, and they are all handled in the same general fashion.

Example 26 (Random vector). Let T = {1, . . . , k} and for each i ∈ T , let Xi be a

random variable (all defined on the same probability space). Then (X1, . . . , Xk) is one way

to represent {Xi : i ∈ {1, . . . , k}}.
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Example 27 (Random probability measure). Let Θ : Ω→ IRk be a random vector with

distribution µΘ. Let f : IR× IRk → IR+0 be a measurable function such that
∫
f(x, θ)dx = 1

for all θ ∈ IRk. Let T = B1, the Borel σ-field of subsets of IR. For each B ∈ T , define

XB(ω) =

∫
B

f(x,Θ(ω))dx.

The stochastic process {XB : B ∈ B1} is a random probability measure.

The distribution of a stochastic process is the probability measure induced on its range
space. Unfortunately, if T is an infinite set, the range space of a stochastic process is an
infinite-dimensional product set. We need to be able to construct a σ-field of subsets of such
a set.

An infinite product of sets is usually defined as a set of functions.

Definition 28 (Alternative Representation of Product Set). Let T be a set. Suppose

that, for each t ∈ T , there is a set Xt. The product set X =
∏

t∈T Xt is defined to be the

set of all functions f : T →
⋃

t∈T Xt such that, for every t, f(t) ∈ Xt. When each Xt is the

same set Y, then the product set is denoted YT .

The above definition applies to all product sets, not just infinite ones.

Example 29. It is easy to see that finite product sets can be considered sets of functions

also. Each k-tuple is a function f from {1, . . . , k} to some space, where the ith coordinate is

f(i). For example, the notation IRk can be thought of as a shorthand for IR{1,...,k}. A vector

(x1, . . . , xk) is the function f such that f(i) = xi for i = 1, . . . , k.

Example 30 (Random probability measure). In Example 27, let XB = [0, 1] for all

B ∈ T . Then each random variable XB takes values in XB. The infinite product set is

[0, 1]B
1
. Each probability measure on (IR,B1) is a function from B1 into [0, 1]. The product

set contains other functions that are not probabilities. For example, the function f(B) = 1

for all B ∈ B1 is in the product set, but is not a probability.

We want the σ-field of subsets of a product space to be large enough so that all of the
coordinate projection functions are measurable.

Definition 31 (Projection, Cylinder Set, and Product Measure). Let T be a set.

For each t ∈ T , let (Xt,Ft) be a measurable space. Let X =
∏

t∈T Xt be the product set. For

each t ∈ T , the t-coordinate projection function πt : X → Xt is defined as πt(f) = f(t). A

one-dimensional cylinder set is a set of the form
∏

t∈T Bt where there exists one t0 ∈ T and

B ∈ Ft0 such that Bt0 = B and Bt = Xt for all t 6= t0. Define ⊗t∈TFt to be the σ-field

generated by the one-dimensional cylinder sets, and call this the product σ-field.
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Example 32. Let X = IRk for finite k. For 1 ≤ i ≤ k, the i-coordinate projection function

is πi(x1, . . . , xk) = xi. An example of a one-dimensional cylinder set (in the case k = 3) is

IR× [−3.7, 4.2)× IR.

Example 33 (Random probability measure). In Example 30, let Q be a probability

on B1. Then Q is an element of the infinite product set [0, 1]B
1
. For each B ∈ T , the

B-coordinate projection function evaluated at Q is πB(Q) = Q(B).

Lemma 34. The product σ-field is the smallest σ-field such that all πt are measurable.

Proof: Notice that, for each t0 ∈ T and each Bt0 ∈ Ft0 , π
−1
t0 (Bt0) is the one-dimensional

cylinder set
∏

t∈T Bt where Bt = Xt for all t 6= t0. This makes every πt measurable. Notice
also that the sets required to make all the πt measurable generate the product σ-field, hence
the product σ-field is the smallest σ-field such that the πt are all measurable.

A stochastic process can be thought of as a random function. When a product space is
explicitly considered a function space, the coordinate projection functions are sometimes
called evaluation functionals.

Theorem 35. Let (Ω,F , P ) be a probability space. Let T be a set. For each t ∈ T , let

(Xt,Ft) be a measurable space and let Xt : Ω→ Xt be a function. Let X =
∏

t∈T Xt. Define

X : Ω→ X by setting X(ω) to be the function f defined by f(t) = Xt(ω) for all t. Then X

is F/⊗t∈T Ft-measurable if and only if each Xt : Ω→ Xt is F/Ft-measurable.

Proof: For the “if” direction, assume that each Xt is measurable. Let C be the collection
of one-dimensional cylinder sets, which generates the product σ-field. Let C ∈ C. Then
there exists t0 and B ∈ Ft0 such that C =

∏
t∈T Bt where Bt0 = B and Bt = Xt for all t 6= t0.

It follows that X−1(C) = X−1
t0 (B) ∈ F . So, X is measurable by Lemma 7 of Lecture Notes

Set 2.

For the “only if” direction, assume that X is measurable. Let πt be the t coordinate
projection function for each t ∈ T . It is trivial to see that Xt = πt(X). Since each πt is
measurable, it follows that each Xt is measurable.

The function X defined in Theorem 35 is an alternative way to represent the stochastic
process {Xt : t ∈ T}. That is, instead of thinking of a stochastic process as an indexed set of
random quantities, think of it as just another random quantity, but one whose range space
is itself a function space. In this way, stochastic processes can be thought of as random
functions. The idea is that, instead of thinking of Xt as a function of ω for each t, think of
X(ω) as a function of t for each ω.

Here are some examples of how to think of stochastic processes as random functions and
vice-versa.

9



Example 36. Let β0 and β1 be random variables. Let T = IR. For each x ∈ IR, define

Xx(ω) = β0(ω)+β1(ω)x. Define X as in Theorem 35. Then X is a random linear function.

This means that, for every ω, X(ω) is a linear function from IR to IR. Indeed, it is the

function that maps the number x to the number β0(ω) + β1(ω)x.

Example 37 (Random probability measure). In Example 27, define X(ω) to be the

function (element of the product set) that maps each set B to
∫
B
f(x,Θ(ω))dx. To see that

X : Ω → [0, 1]B
1

is measurable, let C be the one-dimensional cylinder set
∏

B∈T CB where

each CB = [0, 1] except CB0 = D. Define g(θ) =
∫
B0
f(x, θ)dx. We know that g : IRk → [0, 1]

is measurable. Hence g(Θ) : Ω → [0, 1] is measurable. It follows that X−1(C) = g−1(D), a

measurable set.

Clearly, there must exist probability measures on product spaces such as(∏
t∈T Xt,⊗t∈TFt

)
. If we start with a stochastic process {Xt : t ∈ T} and represent it as

a random function X, then the distribution of X is a probability measure on the product
space. This distribution has the obvious marginal distributions for the individual Xt’s. But,
in general, nothing much can be said about other aspects of the joint distribution.

3.1 Kolmogorov’s Extension

There is such a thing as product measure on an infinite product space, but to prove it, we need
a little more machinery. There is a theorem that says that finite-dimensional distributions
that satisfy a certain intuitive condition will determine a unique joint distribution on the
product space. Here we will focus on probability measures.

Definition 38 (Finite Dimension Projection). Let T be an index set. For each t ∈ T ,

there is a measurable space (Xt,Ft). For all v ⊆ T , let (Xv,Fv) be the corresponding product

space and product σ-field. Let Pv be a probability measure on (Xv,Fv). For u ⊂ v ⊆ T , the

projection of Pv on (Xu,Fu) is the probability measure πu(Pv) defined by

[πu(Pv)](B) = Pv(x ∈ Xv : xu ∈ B), B ∈ Fu.

Similarly, if Q is a probability measure on
(∏

t∈T Xt,⊗t∈TFt

)
, the projection of Q on (Xv,Fv)

is defined by

[πv(Q)](B) = Q

[
ω ∈

∏
t∈T

Xt : ωv ∈ B

]
, B ∈ Fv.

Theorem 39 (Kolmogorov’s Extension). For each t in the arbitrary index set T , let

Xt = IR and Ft the Borel sets of IR. Assume that for each finite nonempty set v of t, we are

given a probability measure Pv on Fv. Assume the Pv are consistent, that is,

πu(Pv) = Pu, for each nonempty u ⊂ v.

Then there is a unique probability measure P on
(∏

t∈T Xt,⊗t∈TFt

)
such that πv(P ) = Pv

for all v.
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