36-752 Advanced Probability Overview Spring 2018

5. L^p Spaces and Weak Law of Large Numbers

Instructor: Alessandro Rinaldo

Associated reading: Sec 2.4, 2.5, and 4.11 of Ash and Doléans-Dade; Sec 1.5 and 2.2 of Durrett.

1 L^p Spaces

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. For $p \geq 1$, consider \mathcal{L}^p , the set of all functions f from Ω to R such that $|f|^p$ is integrable. This set has many properties of a metric space, but it has one problem that we shall see shortly. Let $||f||_p = (\int |f|^p d\mu)^{1/p}$. It is easy to see that $||f||_p \geq 0$ for all $f \in \mathcal{L}^p$. For $p \geq 1$, we will also show that $||f + g||_p \leq ||f||_p + ||g||_p$, whenever $f, g \in \mathcal{L}^p$. Also, if $f \in \mathcal{L}^p$ and $a \in \mathbb{R}$, then $af \in \mathcal{L}^p$ and $||af||_p = |a|| ||f||_p$, so \mathcal{L}^p is a real vector space. The only problem is that $\lVert \cdot \rVert_p$ is not a true norm because $\lVert f \rVert_p = 0$ does not imply that $f = 0$ in the vector space. Every f that equals 0 a.e. $[\mu]$ will have $||f||_p = 0$. Hence, we modify \mathcal{L}^p to create a new set L^p which consists of the equivalence classes of elements of L^p under the equivalence relation $f \sim g$ if and only if $f = g$ a.e. [µ]. We define $||[f]||_p = ||f||_p$, where [f] stands for the equivalence class to which f belongs. Because $g \in [f]$ implies $||g||_p = ||f||_p$, the norm is now well-defined on L^p . So, L^p is a normed linear space, hence a metric space. We will also show (later in this class) that it is complete, and hence a Banach space. People tend to ignore the fact that L^p is a set of equivalence classes rather than a set of functions, and we will do the same.

To be precise, we should include more information in the name of L^p . Indeed, we should refer to the space as $L^p(\Omega, \mathcal{F}, \mu)$, since each measure space has its own L^p space.

The special case of $p = \infty$ is handled separately. A function (equivalence class) f is in L^{∞} if the function is essentially bounded.

Definition 1 (Essential Supremum). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $f : \Omega \to \overline{\mathbb{R}}$ be a measurable function. Let A be the collection of all elements A of F such that $\mu(A^C) = 0$. The essential supremum of f is

$$
\operatorname{ess} \sup f = \inf_{A \in \mathcal{A}} \sup_{\omega \in A} |f(\omega)|
$$

or equivalently

$$
\text{ess}\sup f = \sup\{t : \mu(\omega : |f(\omega)| \ge t) > 0\}.
$$

If ess sup $f < \infty$, we say that f is essentially bounded. The L^{∞} norm of f is $||f||_{\infty} =$ ess sup f .

The essential supremum of f is the least upper bound of $|f|$ on sets whose complements have measure 0. It is the smallest number c such that $|f| \leq c$ a.e. $[\mu]$.

The special L^p space in which $\Omega = \mathbb{Z}^+, \mathcal{F} = 2^{\Omega},$ and μ is counting measure is called ℓ^p .

Example 2. For each $1 \leq p < \infty$, $f \in \ell^p$ if and only if its pth power is an absolutely summable sequence. A sequence f is in ℓ^{∞} if and only if it is bounded.

For probability spaces, $L^{p_1} \subseteq L^{p_2}$ whenever $p_1 \geq p_2$. Indeed, $||X||_{p_1} \geq ||X||_{p_2}$ if $p_1 \geq p_2$. This follows easily from Jensen's inequality.

Proposition 3 (Jensen's inequality). If f is a convex function, then $E[f(X)] \ge f(E(X))$.

For infinite measure spaces, odd behavior is possible.

Example 4. Consider $L^p(\mathbb{R}, \mathcal{B}^1, \lambda)$, where λ is Lebesgue measure. Let

$$
f(x) = \begin{cases} x^{-3/8} & \text{for } 0 < x < 1, \\ x^{-1} & \text{for } 1 \le x < \infty, \\ 0 & \text{otherwise.} \end{cases}
$$

Then $f \notin L^1$, $f \in L^2$, and $f \notin L^3$.

We will prove most results for $L^p(\Omega, \mathcal{F}, \mu)$ where μ is a σ -finite measure. We will use the results mainly for probability spaces.

Lemma 5 (Linearity of L^p). If $X, Y \in L^p$, then $X + Y \in L^p$.

Proof: For all $p > 0$, we have

$$
|a+b|^p \le (|a|+|b|)^p \le (2 \max(|a|,|b|))^p = 2^p \max(|a|^p,|b|^p) \le 2^p (|a|^p + |b|^p).
$$

It follows that

$$
\int |X + Y|^p d\mu \le 2^p \left[\int |X|^p d\mu + \int |Y|^p d\mu \right].
$$

Some of the results on L^p spaces involve the concept of conjugate indices.

Definition 6 (Conjugate Indices). For each $p \in (1,\infty)$, let q be the unique value in $(1,\infty)$ such that $\frac{1}{p}+\frac{1}{q}$ $\frac{1}{q} = 1$. For $p = 1$, let $q = \infty$. Then p and q are conjugate indices.

Theorem 7 (Hölder's inequality). Let $X \in L^p$ and $Y \in L^q$, where p and q are conjugate indices. Then $XY \in L^1$ and $\int |XY| d\mu \leq ||X||_p ||Y||_q$.

Proof: If either p or q is ∞ , the result is obvious. So assume that neither p nor q is ∞ . Define $U = |X|^p$ and $V = |Y|^q$, so that $U, V \in L^1$. Since the weighted geometric mean of two numbers is never more than the weighted arithmetic mean (with the same weights), we have

$$
\frac{U}{\int U d\mu}\Bigg]^{1/p} \left[\frac{V}{\int V d\mu}\right]^{1/q} \leq \frac{1}{p} \frac{U}{\int U d\mu} + \frac{1}{q} \frac{V}{\int V d\mu}.
$$

It follows that

$$
\int U^{1/p} V^{1/q} d\mu \le \left(\int U d\mu\right)^{1/p} \left(\int V d\mu\right)^{1/q} < \infty.
$$

The first of these inequalities can be rewritten $\int |XY| d\mu \leq ||X||_p ||Y||_q$. The second one implies that $XY \in L^1$.

Example 8 (Cauchy-Schwarz inequality). Let $p = q = 2$ in Theorem 7 to get that $X, Y \in L^2$ implies

$$
\int |XY| d\mu \le \sqrt{\int X^2 d\mu \int Y^2 d\mu}.
$$

If μ is a probability, this is the familiar Cauchy-Schwarz inequality.

Theorem 9 is the triangle inequality for L^p norms.

 \lceil

Theorem 9 (Minkowski's inequality). If $X, Y \in L^p$, then

$$
||X + Y||_p \le ||X||_p + ||Y||_p.
$$

Proof: The proofs are simple for $p = 1$ and $p = \infty$. So assume $p \in (1, \infty)$. First, let q be the conjugate index and notice that $(p-1)q = p$. Hence $|X + Y|^{p-1} \in L^q$ and $\|X + Y|^{p-1}\|_q = \|X + Y\|_p^{p/q}$. Write

$$
|X + Y|^p = |X + Y||X + Y|^{p-1} \le |X||X + Y|^{p-1} + |Y||X + Y|^{p-1}.
$$

Theorem 7 says that

$$
\int |X + Y|^p d\mu \le (||X||_p + ||Y||_p) |||X + Y|^{p-1}||_q.
$$

Rewrite this as

$$
||X + Y||_p^p \le (||X||_p + ||Y||_p)||X + Y||_p^{p/q}.
$$

Divide both sides by $||X + Y||_p^{p/q}$ to get the desired result, because $p - p/q = 1$.

We give two more simple but useful inequalities for integrals and expectations.

Proposition 10 (Markov inequality). If f is a nonegative measurable function, then $\mu({\{\omega: f(\omega) \ge c\}}) \le \int f d\mu/c$. In particular, let X be a nonnegative random variable. Then $Pr(X \ge c) \le E(X)/c.$

There is also a famous corollary.

Corollary 11 (Tchebychev inequality). Let X be a random variable and have finite mean μ . Then $Pr(|X - \mu| \ge c) \le Var(X)/c^2$.

Exercise 12. Show that there is some random variable X for which $Pr(|X - \mu| \ge c)$ = $Var(X)/c^2$. Thus, without additional assumptions, Tchebychev's inequality cannot be improved.