
36-752 Advanced Probability Overview Spring 2018

8. Convergence Concepts: in Probability, in Lp and Almost Surely

Instructor: Alessandro Rinaldo

Associated reading: Sec 2.4, 2.5, and 4.11 of Ash and Doléans-Dade; Sec 1.5 and 2.2 of
Durrett.

1 Convergence in Probability and the Weak Law of

Large Numbers

The Weak Law of Large Numbers is a statement about sums of independent random vari-
ables. Before we state the WLLN, it is necessary to define convergence in probability.

Definition 1 (Convergence in Probability). We say Yn converges in probability to Y

and write Yn
P→ Y if, ∀ > 0,

P (ω : |Yn(ω)− Y (ω)| > ) → 0, n → ∞.

Theorem 2 (Weak Law of Large Numbers). Let X,X1, X2, . . . be a sequence of in-

dependent, identically distributed (i.i.d.) random variables with E|X| < ∞ and define

Sn = X1 +X2 + · · ·+Xn. Then
Sn

n

P→ EX.

The proof of WLLN makes use of the independent condition through the following basic
lemma.

Lemma 3. Let X1 and X2 be independent random variables. Let fi (i = 1, 2) be measurable

functions such that E|fi(Xi)| < ∞ for i = 1, 2, then Ef1(X1)f2(X2) = Ef1(X1)Ef2(X2).

The proof of Lemma 3 follows from Lemma 34 of lecture notes set 4 and Fubini’s Theorem.
The following corollary will be used in our proof of WLLN.

Corollary 4. If X1 and X2 are independent random variables, and Var(Xi) < ∞, then

Var(X1 +X2) = Var(X1) + Var(X2).

Proof: [Proof of WLLN] In this proof, we employ the common strategy of first proving
the result under an L2 condition (i.e. assuming that the second moment is finite), and then
using truncation to get rid of the extraneous moment condition.
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First, we assume EX2 < ∞. Because the Xi are iid,

Var


Sn

n


=

1

n2

n

i=1

Var(Xi) =
Var(X)

n
.

By Chebychev’s inequality, ∀  > 0,

Pr


Sn

n
− EX

 > 


≤ 1

2
Var


Sn

n


=

Var(X)

n2
→ 0.

Thus, Sn

n

P→ EX under the finite second moment condition. To transition from L2 to L1, we
use truncation. For 0 < t < ∞ let

Xtk = Xk1(|Xk|≤t)

Ytk = Xk1(|Xk|>t)

Then, we have Xk = Xtk + Ytk and

Sn

n
=

1

n

n

k=1

Xtk +
1

n

n

k=1

Ytk

= Utn + Vtn

Because |


k Ytk| ≤


k |Ytk|, we have

E


1

n

n

k=1

Ytk

 ≤
1

n

n

k=1

E|Ytk| = E(|X|1(|X|>t))

and by DCT,
E(|X|1(|X|>t)) → 0, t → ∞.

Fix 1 >  > 0, for any 0 ≤ δ ≤ 1 we can choose t such that

E

|X|1(|X|>t)


= E|Yt1| < δ/6.

Let µt = E(Xt1) and µ = E(X). Because 0 ≤ δ ≤ 1, then we also have

|µt − µ| ≤ |E(Yt1)| < δ/6 < /3.

Let Bn = {|Utn − µt| > /3} and Cn = {|Vtn| > /3}. Noting that E(X2
tk) ≤ t2 < ∞, we can

apply the Weak Law of Large Numbers to Utn. Thus, we choose N > 0 such that ∀ n > N ,
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Pr(Bn) = Pr(|Unt − µt| > /3) < δ/2.

Now, by Markov’s inequality, we also have

Pr(Cn) = Pr(|Vtn| > /3) ≤ 3E|Vtn|


≤ 3E|Yt1|


≤ δ/2 .

But on Bc
n ∩ Cc

n = (Bn ∪ Cn)
c, we have |Utn − µt| ≤ /3 and |Vtn| ≤ /3, and therefore


Sn

n
− µ

 ≤ |Utn − µt|+ |Vtn|+ |µt − µ| ≤ /3 + /3 + /3 ≤ .

Thus, ∀ n > N ,

Pr


Sn

n
− EX

 > 


≤ Pr(Bn ∪ Cn) ≤ δ.

2 Convergence of Random Variables: almost sure, in

probability and in Lp

Let (Ω,F , P ) be a probability space. Recall that a sequence {Xn}n of random variables
converges to the random variable X (all defined on that same probability space) when

P


ω : lim
n

Xn(ω) = X(ω)


= 1,

or, equivalently, when for each  > 0,

P ({ω : |Xn −X| >  i.o.}) = 0.

Recall that the previous statement can be expressed as

P


lim sup

n
An,


= P




n



k≥n

Ak,


= 0,

where An, = {ω : |Xn(ω)−X(ω)| > }.
For p ≥ 1, we say that Xn converges to X in Lp when

lim
n

E [|Xn −X|p] = 0.

Since the Lp norms are increasing in p, convergence in Lp implies convergence in Lr for
r < p. In the previous section we introduced convergence in probability. We now discuss the
relationship among different notions of convergence.

Fact: Convergence in Lp is different from convergence a.s.
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Example 5. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence of

functions 1, I(0,1/2], I(1/2,1), I(0,1/3], I(1/3,2/3], . . . . These functions converge to 0 in Lp for all

finite p since the integrals of their absolute values go to 0. But they clearly don’t converge

to 0 a.s. since every ω has fn(ω) = 1 infinitely often. These functions are in L∞, but they

don’t converge to 0 in L∞. because their L∞ norms are all 1.

Example 6. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence of

functions

fn(ω) =


0 if 0 < ω < 1/n,

1/ω if 1/n ≤ ω < 1.

Each fn is in Lp for all p, and limn→∞ fn(ω) = 1/ω a.s. But the limit function is not in Lp

for even a single p. Clearly, {fn}∞n=1 does not converge in Lp.

Example 7. Let Ω = (0, 1) with P being Lebesgue measure. Consider the sequence of

functions

fn(ω) =


n if 0 < ω < 1/n,

0 otherwise.

Then fn converges to 0 a.s. but not in Lp since

|fn|pdP = np−1 for all n and finite p. In

this case, the a.e. limit is in Lp, but it is not an Lp limit.

Oddly enough convergence in L∞ does imply convergence a.e., the reason being that L∞

convergence is “almost” uniform convergence.

Proposition 8. Let (Ω,F , µ) be a measure space. Then fn converges to f in L∞ if and only

if there exists a measurable set A such that µ(Ac) = 0 and limn→∞ fn = f , uniformly on A.

We can extend convergence in probability to convergence in measure.

Definition 9 (Convergence in Measure). Let (Ω,F , µ) be a measure space and let f and

{fn}∞n=1 be measurable functions that take values in a metric space with metric d. We say

that fn converges to f in measure if, for every  > 0,

lim
n→∞

µ({ω : d(fn(ω), f(ω)) > }) = 0.

When µ is a probability, convergence in measure is called convergence in probability, denoted

fn
P→ f .

Convergence in measure is different from a.e. convergence. Example 5 is a classic example
of a sequence that converges in measure (in probability in that example) but not a.e. Here
is an example of a.e. convergence without convergence in measure (only possible in infinite
measure spaces).

4



Example 10. Let Ω = IR with µ being Lebesgue measure. Let fn(x) = I[n,∞)(x) for all n.

Then fn converges to 0 a.e. [µ]. However, fn does not converge in measure to 0, because

µ({|fn| > }) = ∞ for every n.

Example 7 is an example of convergence in probability but not in Lp. Indeed convergence in
probability is weaker than Lp convergence.

Proposition 11. If Xn −Xp → 0 in Lp for some p > 0, then Xn
P→ X.

Convergence in probability is also weaker than converges a.s.

Lemma 12. If Xn → X a.s., then Xn
P→ X.

Proof: Let  > 0. Let C = {ω : limn→∞ Xn(ω) = X(ω)}, and define Cn = {ω :
d(Xk(ω), X(ω)) < , for all k ≥ n}. Clearly, C ⊆

∞
n=1 Cn,. Because Pr(C) = 1 and

{Cn}∞n=1 is an increasing sequence of events, Pr(Cn) → 1. Because {ω : d(Xn(ω), X(ω)) >
} ⊆ CC

n ,
Pr(d(Xn, X) > ) → 0.

A partial converse of this lemma is true and will be proved later.

Lemma 13. If Xn
P→ X, then there is a subsequence {Xnk

}∞k=1 such that Xnk

a.s.→ X.

There is an even weaker form of convergence that we will discuss in detail later in the course.

Definition 14 (Convergence in Distribution). A notion of convergence of a probability

distribution on R (or more general space). We say Xn
D→ X if Pr(Xn ≤ x) → Pr(X ≤ x)

for all x at which the RHS is continuous.

Note that this is not really a notion of convergence of random variables, but the convergence
of their distribution functions. This weak convergence appears in the central limit theorem.

Fact 15. Xn
D→ X ⇐⇒ Ef(Xn) → Ef(X) for all bounded and continuous function f .

The relationship between modes of convergence can be summarized as follows.
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Xn
a.s.→ X Xn

LP

→ X

Xn
P→ X

Xn
D→ X

❅
❅

❅
❅

❅
❅

❅
❅
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