36-752 Advanced Probability Overview Spring 2018

9. Almost Sure Convergence and Strong Law of Large Numbers

Instructor: Alessandro Rinaldo

Associated reading: Sec 6.1 and 6.2 of Ash and Doléans-Dade; Sec 2.3–2.5 of Durrett.

Overview

Let $\{X_i : i \geq 1\}$ be i.i.d random variables with $-\infty < EX_1 < \infty$. WLLN says that the partial average $(X_1 + X_2 + ... + X_n)/n$ converges to EX_1 in probability. In fact, one can prove a stronger result: $(X_1 + X_2 + ... + X_n)/n$ converges to μ almost surely.

We start with Kolmogorov's 0-1 law and the notion of tail σ -field.

Theorem 1 (Kolmogorov 0-1 law). Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of independent random quantities. Define $\mathcal{T}_n = \sigma(\{X_i : i \geq n\})$ and $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{T}_n$. Then every event in \mathcal{T} has *probability either 0 or 1.*

Proof: Let $\mathcal{U}_n = \sigma(\{X_i : i \leq n\})$, and let $\mathcal{U} = \bigcup_{n=1}^{\infty} \mathcal{U}_n$. Let $A \in \mathcal{U}$ and $B \in \mathcal{T}$. There exists *n* such that $A \in \mathcal{U}_n$. Because $B \in \mathcal{T}_{n+1}$, it follows that *A* and *B* are independent. So U and $\mathcal T$ are independent. It follows from Proposition 19 of Lecture Notes Set 4 that $\sigma(\mathcal{U}) = \sigma(\{X_n\}_{n=1}^{\infty})$ and \mathcal{T} are independent. Since $\mathcal{T} \subseteq \sigma(\mathcal{U})$, it follows that \mathcal{T} is independent of itself, hence for all $B \in \mathcal{T}$, $\Pr(B) \in \{0, 1\}$ because $P(B) = P(B \cap B) = P(B)P(B)$.

Definition 2. The σ -field \mathcal{T} *in Theorem 1 is called the tail* σ -field *of the sequence* $\{X_n\}_{n=1}^{\infty}$.

Now consider the event $A \equiv \{\omega : (X_1 + X_2 + ... + X_n)/n\}$ converges. Then it is easy to check that $A \in \mathcal{T}$, and hence $P(A) = 0$ or 1 by Kolmogorov's 0-1 law. According to WLLN, we shall conjecture that $P(A) = 1$.

1 Preliminaries and Borel Cantelli Lemmas

Definition 3 (i.o. and ev.). *Let qⁿ be some statement, true or false for each n. We say* q_n happens infinitely often or $(q_n$ *i.o.*) if for all n there is $m \geq n$ such that q_m is true, and $(q_n$ ev.) if there exists n such that for all $m \geq n$, q_m is true. Now consider probability space (Ω, \mathcal{F}, P) *and let* q_n *depend on* $\omega \in \Omega$ *, giving events*

$$
A_n = \{ \omega : q_n(\omega) \text{ is true} \}.
$$

We now have new events,

$$
\{A_n \ i.o.\} = \{\omega : q_n(\omega) \ i.o.\} = \bigcap_{n \geq 1} \bigcup_{m \geq n} A_m \equiv \limsup_{n \to \infty} A_n,
$$

and

$$
\{A_n \; ev.\} = \{\omega : q_n(\omega) \; ev.\} = \bigcup_{n \geq 1} \bigcap_{m \geq n} A_m \equiv \liminf_{n \to \infty} A_n.
$$

Useful facts.

- 1. Given a sequence of events A_n , the sequence $(1_{A_n}(\omega) : n \ge 1)$ can be viewed as a function of $\omega \mapsto \{0,1\}^{\mathbb{Z}^+}.$
- 2. $\mathbf{1}_{(A_n \text{ i.o.})} = \limsup_{n \to \infty} \mathbf{1}_{A_n}$ and $\mathbf{1}_{(A_n \text{ ev.})} = \liminf_{n \to \infty} \mathbf{1}_{A_n}$.
- 3. (de Morgan) $\{A_n \text{ i.o.}\}^c = \{A_n^c \text{ ev.}\}\text{ and }\{A_n \text{ ev.}\}^c = \{A_n^c \text{ i.o.}\}\$
- 4. $a_n \to a \Longleftrightarrow \forall \epsilon > 0, |a_n a| < \epsilon \text{ ev.}$, so

$$
X_n \stackrel{\text{a.s.}}{\to} X \iff \forall \epsilon > 0, \text{ Pr}(|X_n - X| \le \epsilon \text{ ev.}) = 1
$$

$$
\iff \forall \epsilon > 0, \text{ Pr}(|X_n - X| > \epsilon \text{ i.o.}) = 0.
$$

(in the second " \Leftrightarrow ", showing " \Rightarrow " is trivial but " \Leftarrow " is less trivial.)

Exercise 4. $X_n \stackrel{\text{a.s.}}{\rightarrow} 0 \Longleftrightarrow \sup_{k \ge n} |X_k| \stackrel{P}{\rightarrow} 0.$

Next we present a basic tool in the study of almost sure convergence.

Theorem 5 (First Borel-Cantelli lemma). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. If $\sum_{n=1}^{\infty} \mu(A_n)$ ∞ *then* μ (lim $\sup_{n\to\infty} A_n$) = 0 *or equivalently,* μ (A_n *i.o.*) = 0.

Proof: Let $B_i = \bigcup_{n=i}^{\infty} A_n$. Then $\{B_i\}_{i=1}^{\infty}$ is a decreasing sequence of sets, each of which has finite measure, so by continuity of measure we have

$$
\lim_{i \to \infty} \mu(B_i) = \mu\left(\lim_{i \to \infty} B_i\right) = \mu\left(\bigcap_{i=1}^{\infty} B_i\right) = \mu\left(\limsup_{n \to \infty} A_n\right).
$$

Since $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, it follows that $\lim_{i \to \infty} \sum_{n=i}^{\infty} \mu(A_n) = 0$. Since $\mu(B_i) \leq \sum_{n=i}^{\infty} \mu(A_n)$, $\lim_{i\to\infty}\mu(B_i)=0$, and the result follows.

Theorem 6 (Second Borel-Cantelli lemma). Let (Ω, \mathcal{F}, P) be a probability space. If $\sum_{n=1}^{\infty} P(A_n) = \infty$ and if $\{A_n\}_{n=1}^{\infty}$ are mutually independent, then P (lim sup_{n $\rightarrow \infty$} A_n) = 1 or *equivalently,* $P(A_n \textit{i.o.}) = 1$.

Proof: Let $B = \limsup_{n \to \infty} A_n$. We shall prove that $P(B^C) = 0$. Let $C_i = \bigcap_{n=i}^{\infty} A_n^C$. Then $B^C = \bigcup_{i=1}^{\infty} C_i$. So, we shall prove that $P(C_i) = 0$ for all *i*. Now, for each *i* and $k > i$,

$$
P(C_i) = P\left(\bigcap_{n=i}^{\infty} A_n^C\right) \le P\left(\bigcap_{n=i}^k A_n^C\right) = \prod_{n=i}^k [1 - P(A_n)].
$$

Use the fact that $\log(1-x) \leq -x$ for all $0 \leq x \leq 1$ to see that, for every $k > i$,

$$
\log[P(C_i)] \le \sum_{n=i}^{k} \log[1 - P(A_n)] \le -\sum_{n=i}^{k} P(A_n).
$$

Since this is true for all $k > i$, it follows that $log[P(C_i)] \leq -\sum_{n=i}^{\infty} P(A_n) = -\infty$. Hence, $P(C_i) = 0$ for all *i*.

Now we use the Borel-Cantelli Lemma to prove some results in Lecture Notes Set 5.

Theorem (Lemma 25 of Lecture Notes Set 5). If $X_n \overset{P}{\rightarrow} X$, then there is a subsequence ${X_{n_k}}_{k=1}^{\infty}$ *such that* $X_{n_k} \stackrel{\text{a.s.}}{\rightarrow} X$.

Proof: Let n_k be large enough so that $n_k > n_{k-1}$ and $Pr(d(X_{n_k}, X) > 1/2^k) < 1/2^k$. Because $\sum_{k=1}^{\infty} \Pr(d(X_{n_k}, X) > 1/2^k) < \infty$, we know that $\Pr(d(X_{n_k}, X) > 1/2^k)$ i.o.) = 0. Let $A = \{d(X_{n_k}, X) > 1/2^k \text{ i.o.}\}\$. Then $\Pr(A^C) = 1$ and $\lim_{k \to \infty} X_{n_k}(\omega) = X(\omega)$ for every $\omega \in A^C$.

The next application of Borel-Cantelli lemma shows that $L^P(\Omega, \mathcal{F}, \mu)$ is complete.

Definition 7 (Cauchy sequence). *Let E be a metric space with metric d. A sequence* ${x_n}_{n=1}^{\infty}$ in E is a Cauchy sequence if, for every $\epsilon > 0$ there exists N such that $d(x_n, x_m) < \epsilon$ *for* all $m, n \geq N$. The metric space *E* is complete *if* every *Cauchy* sequence *in E* converges *to an element of E.*

Proposition 8. If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in a metric space and if a subsequence *converges to x, the whole sequence converges to x.*

Lemma 9 (Completeness of L^P **spaces).** *Each Cauchy sequence in* L^p *converges.*

Proof: Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^p(\Omega, \mathcal{F}, \mu)$. Let $\{n_k\}_{k=1}^{\infty}$ be a sequence of integers such that $||f_{n_k} - f_{n_{k+1}}||_p < 1/3^k$ for all *k*. For finite *p*, apply the Markov inequality to $|f_{n_k} - f_{n_{k+1}}|^p$ to get

$$
\mu\left(\left|f_{n_k}-f_{n_{k+1}}\right|>\frac{1}{2^k}\right) < 2^{pk} \|f_{n_k}-f_{n_{k+1}}\|_p^p \le \left(\frac{2}{3}\right)^{pk}.
$$

Since $\sum_{k=1}^{\infty} \mu(|f_{n_k} - f_{n_{k+1}}| > 1/2^k) < \infty$, it follows from Theorem 5 that

$$
\mu\left(|f_{n_k} - f_{n_{k+1}}| > \frac{1}{2^k} \text{ i.o.}\right) = 0.
$$

For $p = \infty$, we have $\mu(|f_{n_k} - f_{n_{k+1}}| > 1/3^k) = 0$, for all *k*, hence

$$
\mu\left(|f_{n_k} - f_{n_{k+1}}| > \frac{1}{3^k} \text{ i.o.}\right) = 0.
$$

In either case, it follows that, a.e. $[\mu] \sum_{k=1}^{\infty} |f_{n_k}(\omega) - f_{n_{k+1}}(\omega)| < \infty$, hence $\{f_{n_k}\}_{k=1}^{\infty}$ converges a.e. [μ] to some limit, call it *f*. To see that *f* is the L^p limit of $\{f_{n_k}\}$, use Fatou's lemma and repeated applications of the triangle inequality to see that

$$
||f||_p \leq \liminf_{k \to \infty} ||f_{n_k}||_p \leq \left(||f_{n_1}||_p + \lim_{k \to \infty} \sum_{m=1}^k ||f_{n_m} - f_{n_{m+1}}||_p \right) < \infty.
$$

Also,

$$
||f - f_{n_k}||_p \le \sum_{m=k}^{\infty} ||f_{n_m} - f_{n_{m+1}}||_p < \frac{2}{3^k}.
$$

Proposition 8 then says that the whole sequence converges to *f* in *L^p*.

2 Sums of independent random variables

The proof of strong law of large numbers requires a series of results about sums of independent random variables. These are also interesting classical results.

Theorem 10 (Kolmogorov's maximal inequality). Let $\{X_k\}_{k=1}^n$ be a finite collection *of* independent random variables with finite variance and mean 0. Define $S_k = \sum_{i=1}^k X_i$ for *all k. Then*

$$
\Pr\left(\max_{1\leq k\leq n}|S_k|\geq \epsilon\right)\leq \frac{\text{Var}(S_n)}{\epsilon^2}.
$$

Proof: For $n = 1$, the result is just Chebyshev's inequality. So assume that $n > 1$ for the rest of the proof. Let A_k be the event that $|S_k| \geq \epsilon$ but $|S_j| < \epsilon$ for $j < k$. Then $\{A_k\}_{k=1}^n$ are disjoint and

$$
\left\{\max_{1\leq k\leq n}|S_k|\geq \epsilon\right\} = \bigcup_{k=1}^n A_k.
$$
\n(1)

It follows that

$$
E(S_n^2) \geq \sum_{k=1}^n \int_{A_k} S_n^2 dP
$$

\n
$$
= \sum_{k=1}^n \int_{A_k} [S_k^2 + 2S_k(S_n - S_k) + (S_n - S_k)^2] dP
$$

\n
$$
\geq \sum_{k=1}^n \int_{A_k} [S_k^2 + 2S_k(S_n - S_k)] dP
$$

\n
$$
= \sum_{k=1}^n \int_{A_k} S_k^2 dP
$$

\n
$$
\geq \epsilon^2 \sum_{k=1}^n \Pr(A_k)
$$

\n
$$
= \epsilon^2 \Pr\left(\max_{1 \leq k \leq n} |S_k| \geq \epsilon\right),
$$

where the first two inequalities and the first equality are obvious. The second inequality follows from the fact that $I_{A_k} S_k$ is independent of $(S_n - S_k)$ which has mean 0. The third inequality follows since $S_k^2 \geq \epsilon^2$ on A_k , and the third equality follows from Equation (1).

The reason that this theorem works is that whenever the maximum $|S_k|$ is large, it most likely is $|S_n|$ that is large.

A consequence of Kolmogorov's maximal inequality is the basic *L*² convergence theorem.

Theorem 11 (Basic *L*² Convergence Theorem). *Let X*¹ *X*2*, . . . be independent random* variables with $E(X_i) = 0$ and $E(X_i^2) = \sigma_i^2 < \infty$, $i = 1, 2, ...,$ and $S_n = X_1 + X_2 + \cdots + X_n$. If $\sum_{i=1}^{\infty} \sigma_i^2 < \infty$, then S_n converges a.s. and in L^2 to some S_{∞} with $E(S_{\infty}^2) = \sum_{i=1}^{\infty} \sigma_i^2$.

Recall: The conclusion has been proved in the completeness of L^p for $p = 2$. Here we give a different argument for a.s. convergence using Kolmogorov's maximal inequality.

Proof: We say that S_n is Cauchy a.s. if $M_n := \sup_{p,q \ge n} |S_p - S_q| \to 0$ a.s. In light of Exercise 4, if $Pr(M_n > \epsilon) \rightarrow 0$ for all $\epsilon > 0$, then $M_n \downarrow 0$ a.s.

Let $M_n^* := \sup_{p \ge n} |S_p - S_n|$. By the triangle inequality,

$$
|S_p - S_q| \le |S_p - S_n| + |S_q - S_n| \Rightarrow M_n^* \le M_n \le 2M_n^*,
$$

so it is sufficient to show that M_n^* $\stackrel{P}{\rightarrow} 0.$ For all $\epsilon > 0$,

$$
\Pr\left(\sup_{p\geq n}|S_p - S_n| > \epsilon\right) = \lim_{N \to \infty} \Pr\left(\max_{n \leq p \leq N} |S_p - S_n| > \epsilon\right)
$$

$$
\leq \lim_{N \to \infty} \sum_{i=n+1}^N \frac{\sigma_i^2}{\epsilon^2} = \sum_{i=n+1}^\infty \frac{\sigma_i^2}{\epsilon^2}
$$

where we used continuity of measure in the first step and applied Kolmogorov's inequality in the second step. Since $\sum_{i=1}^{\infty} \sigma_i^2 < \infty$,

$$
\lim_{n \to \infty} \Pr \left(\sup_{p \le n} |S_p - S_n| > \epsilon \right) = 0
$$

Remark: Later in this class we shall see that the conclusion is valid for a martingale $\{S_n\}$ with $E[X_{n+1}f(X_1,\ldots,X_n)]=0$ for all bounded measurable $f:\mathbb{R}^n\to\mathbb{R}$.

A consequence of the basic L^2 theorem is the following interesting theorem about sums of independent random variables. It gives necessary and sufficient conditions for convergence of S_n . For each $c > 0$ and each n , let $X_n^{(c)}(\omega) = X_n(\omega)I_{[0,c]}(|X_n(\omega)|)$. We will prove only the sufficiency part of the result. The necessity proof involves martingale theory and will be given later.

Theorem 12 (Three-series theorem). Suppose that $\{X_n\}_{n=1}^{\infty}$ are independent. For each $c > 0$ *, consider the following three series:*

$$
\sum_{n=1}^{\infty} \Pr(|X_n| > c), \quad \sum_{n=1}^{\infty} E(X_n^{(c)}), \quad \sum_{n=1}^{\infty} \text{Var}(X_n^{(c)}).
$$
 (2)

 \blacksquare

A necessary condition for S_n to converge a.s. is that all three series are finite for all $c > 0$. *A sufficient condition is that all three series converge for some* $c > 0$ *.*

Proof: First, define some notation. For each $c > 0$ and each *n*, define

$$
S_n^{(c)} = \sum_{k=1}^n X_k^{(c)},
$$

\n
$$
M_n^{(c)} = \sum_{k=1}^n E(X_k^{(c)}),
$$

\n
$$
s_n^{(c)} = \sqrt{\sum_{k=1}^n \text{Var}(X_k^{(c)})}.
$$

For sufficiency, assume that all three series converge for some $c > 0$. Because the second and third series in Equation (2) converge, Theorem 11 says that $S_n^{(c)}$ converges a.s. We know that $Pr(X_n \neq X_n^{(c)}) = Pr(|X_n| > c)$. Since the first series in Equation (2) converges, the first Borel-Cantelli lemma says that $Pr(X_n \neq X_n^{(c)} \text{ i.o.}) = 0$. Hence, for almost all ω , there exists $N(\omega)$ such that $S_n(\omega) - S_n^{(c)}(\omega)$ is the same for all $n \ge N(\omega)$. Hence $S_n(\omega)$ converges for almost all ω for almost all ω .

Example 13. Let X_n have a uniform distribution on the interval $[a_n, b_n]$. A necessary *condition for convergence of* S_n *is that* $\sum_{n=1}^{\infty} (b_n - a_n)^2 < \infty$ (the *third series*). Another *necessary condition* is that $\sum_{n=1}^{\infty} (a_n + b_n)$ *converge (the second series).* It follows that a_n and b_n must both converge to 0 so that the first series also converges for all $c > 0$. That the *two conditions above are su*ffi*cient for the convergence of Sⁿ follows from Theorem 11.*

Example 14. *Let*

$$
\Pr(X_n = x) = \begin{cases} \frac{1}{2n^2} & \text{if } x = n \text{ or } x = -n, \\ \frac{1}{2} - \frac{1}{2n^2} & \text{if } x = -1/n \text{ or } x = 1/n, \\ 0 & \text{otherwise.} \end{cases}
$$

Then $E(X_n) = 0$ *and* $Var(X_n) = 1 + 1/n^2 - 1/n^4$. So Theorem 11 does not imply that S_n *converges a.s. However, for* $c > 0$, $E(X_n^{(c)}) = 0$ *and* $Var(X_n^{(c)})$ *eventually equals* $1/n^2 - 1/n^4$ while $Pr(|X_n| > c)$ eventually equals $1/n^2$, so the three-series theorem does imply that S_n *converges a.s.*

3 Strong Law of Large Numbers

We now prove the strong law of large numbers. We first need to recall some results in elementary analysis.

Lemma 15 (Kronecker's lemma). *If let* $\{x_n : n \geq 1\}$ *and* $\{a_n : n \geq 1\}$ *be sequences of* real numbers, such that $0 < a_n \uparrow \infty$ and $\sum_{n=1}^{\infty} x_n/a_n < \infty$, then $(\sum_{i=1}^{n} x_i)/a_n \to 0$.

Observation. Let X_1, X_2, \ldots be independent with mean 0 and $S_n = X_1 + X_2 + \cdots + X_n$. If $\sum_{n=1}^{\infty} E(X_n^2)/a_n^2 < \infty$, then by the basic L^2 convergence theorem $\sum_{n=1}^{\infty} X_n/a_n$ converges a.s., hence $S_n/a_n \to 0$ a.s. by Kronecker's lemma.

Example 16. *Let* X_1, X_2, \ldots *be i.i.d.*, $E(X_i) = 0$ *, and* $E(X_i^2) = \sigma^2 < \infty$ *. Take* $a_n = n$ *:*

$$
\sum_{n=1}^{\infty} \frac{\sigma^2}{n^2} < \infty \implies \frac{S_n}{n} \stackrel{a.s.}{\to} 0.
$$

Now take $a_n = n^{\frac{1}{2} + \epsilon}, \epsilon > 0$ *:*

$$
\sum_{n=1}^{\infty} \frac{\sigma^2}{n^{1+2\epsilon}} < \infty \implies \frac{S_n}{n^{\frac{1}{2}+\epsilon}} \stackrel{a.s.}{\to} 0.
$$

Theorem 17 (Kolmogorov's Law of Large Numbers). *Let X*1*, X*2*, ... be i.i.d. with* $E(|X_i|) < \infty$, $S_n = X_1 + ... + X_n$. Then $S_n/n \to E(X)$ *a.s. as* $n \to \infty$.

Note that the theorem is true with just pairwise independence instead of the full independence assumed here. The theorem also has an important generalization to stationary sequences.

Proof: Without loss of generality, assume $E(X_1) = 0$.

Consider truncated variables

$$
\widehat{X}_n := X_n \mathbf{1}(|X_n| \le n).
$$

Observe that

$$
\Pr(X_n = \hat{X}_n \text{ ev.}) = 1.
$$

To see this, check

$$
\Pr(X_n \neq \widehat{X}_n \ i.o.) = \Pr(|X_n| > n \ i.o.)
$$

and use Borel-Cantelli lemma by observing

$$
\sum_{n=1}^{\infty} \Pr(|X_n| > n) = \sum_{n=1}^{\infty} \Pr(|X| > n) \le \int_{[0,\infty)} \Pr(|X| > t) dt = E|X| < \infty.
$$

Now center the truncated variables. Define $\widetilde{X}_n := \widehat{X}_n - \mathrm{E}\left(\widehat{X}_n\right)$. We will show that

$$
\left(\frac{S_n}{n} \stackrel{\text{a.s.}}{\to} 0\right) \stackrel{\leftarrow}{\underset{\text{(a)}}{\leftarrow}} \left(\frac{\hat{S}_n}{n} \stackrel{\text{a.s.}}{\to} 0\right) \stackrel{\leftarrow}{\underset{\text{(b)}}{\leftarrow}} \left(\frac{\tilde{S}_n}{n} \stackrel{\text{a.s.}}{\to} 0\right),
$$

where $\hat{S}_n = \hat{X}_1 + \hat{X}_2 + \cdots + \hat{X}_n$ and $\tilde{S}_n = \tilde{X}_1 + \tilde{X}_2 + \cdots + \tilde{X}_n$. (a) comes from the fact that if $\omega \in \{\omega : X_n = \hat{X}_n \text{ ev.}\}\$ (which has probablity 1), then $S_n(\omega)/n - \widehat{S}_n(\omega)/n \to 0.$

(b) comes from (fact: if $c_n \to 0$ then $(c_1 + ... + c_n)/n \to 0$)

$$
\frac{\widehat{S}_n}{n} - \frac{\widetilde{S}_n}{n} = \frac{\mathbf{E}\widehat{X}_1 + \mathbf{E}\widehat{X}_2 + \dots + \mathbf{E}\widehat{X}_n}{n} \to 0 \text{ as } n \to \infty
$$

because by DCT we have

$$
\mathbb{E}\widehat{X}_n = \mathbb{E}[X_n\mathbf{1}(|X_n| \leq n)] = \mathbb{E}[X\mathbf{1}(|X| \leq n)] \to 0.
$$

Now, if we can show that

$$
\sum_{n=1}^{\infty} \frac{\mathrm{E}\left(\widetilde{X}_n^2\right)}{n^2} < \infty \,,
$$

then the proof can be completed by Kronecker's lemma and the L^2 convergence theorem (see the observation following Lemma 15).

In fact, note that

$$
\mathcal{E}\left(\tilde{X}_n^2\right) = \text{Var}(\hat{X}_n) \le \mathcal{E}(\hat{X}_n^2) = \mathcal{E}(X^2 \mathbf{1}(|X| \le n)).
$$

So, by some basic manipulation, we have

$$
\sum_{n=1}^{\infty} \frac{E(X_n^2)}{n^2} \le \sum_{n=1}^{\infty} \frac{EX^2 \mathbf{1}(|X| \le n)}{n^2} = E\left(X^2 \sum_{n=1}^{\infty} \frac{\mathbf{1}(|X| \le n)}{n^2}\right)
$$

\n
$$
\le E\left(X^2 \sum_{n=1}^{\infty} \frac{\mathbf{1}(|X| \le n)}{n^2} \mathbf{1}(|X| \le 2)\right) + E\left(X^2 \sum_{n=1}^{\infty} \frac{\mathbf{1}(|X| \le n)}{n^2} \mathbf{1}(|X| > 2)\right)
$$

\n
$$
\le 4 \sum_{n=1}^{\infty} \frac{1}{n^2} + E\left(X^2 \sum_{n=1}^{\infty} \frac{\mathbf{1}(|X| \le n)}{n^2} \mathbf{1}(|X| > 2)\right)
$$

\n
$$
\le \sum_{n=1}^{\infty} \frac{4}{n^2} + E\left(X^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \mathbf{1}(|X| > 2)\right)
$$

\n
$$
\le \sum_{n=1}^{\infty} \frac{4}{n^2} + E\left(X^2 \frac{1}{|X| - 1} \mathbf{1}(|X| > 2)\right)
$$

\n
$$
\le \sum_{n=1}^{\infty} \frac{4}{n^2} + E\left(X^2 \frac{3}{|X|} \mathbf{1}(|X| > 2)\right)
$$

\n
$$
\le \sum_{n=1}^{\infty} \frac{4}{n^2} + E(3|X|) < \infty.
$$

4 Law of the Iterated Logarithm

Let $X_1, X_2, ...$ be i.i.d. with $EX_i = 0$, $EX_i^2 = \sigma^2$, $S_n = X_1 + ... + X_n$. We know

$$
\frac{S_n}{n^{\frac{1}{2}+\varepsilon}} \xrightarrow{a.s.} 0 \text{ as } n \to \infty.
$$

 \blacksquare

For general interest, we state, without proof, the *Law of the Iterated Logarithm*:

$$
\limsup_{n \to \infty} \frac{S_n}{\sigma \sqrt{2n \log(\log n)}} = 1 \text{ a.s.}
$$

$$
\liminf_{n \to \infty} \frac{S_n}{\sigma \sqrt{2n \log(\log n)}} = -1 \text{ a.s.}
$$

We will show later

$$
\frac{S_n}{\sigma n^{\frac{1}{2}}} \xrightarrow{d} N(0, 1) \text{ as } n \to \infty.
$$