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20.1 Review

Recall the delta method from last lecture.

Theorem 20.1 If rn(Xn − θ)
D→ X in Rd, and f : Rd → Rk is a function differentiable at θ, then

rn(f(Xn)− f(θ))
D→ f ′(θ)X.

20.2 Delta Method

Definition 20.2 The variance stabilizing transformation is the delta method where k = d = 1, so that

rn(f(Xn)− f(θ))
D→ N (0, f ′(θ)2σ2

θ).

Example: Consider

(X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ N

(
0,

(
1 ρ
ρ 1

))
.

We want to estimate ρ = corr(X,Y ). We know

ρn =
1
n

∑
i(Xi − X̄)(Yi − Ȳ )√

1
n

∑
i(Xi − X̄)2

√
1
n

∑
i(Yi − Ȳ )2

.

Then
√
n(ρn − ρ)

D→ N (0, (1 − ρ2)2). When constructing a confidence interval, we have to know ρ. One
solution could be that we choose f : θ →

∫
1
σθ

, the anti-derivative. For ρn, choose f(ρ) =
∫

1
1−ρ2 =

1
2 log

(
1+ρ
1−ρ

)
= tanh−1(ρ). By the delta method we have that

√
n(tanh−1(ρn)− tanh−1(ρ))

D→ N (0, 1).

For α ∈ (0, 1), an asymptotic confidence interval for ρ is:{
ρ : tanh−1(ρ) ∈

[
tanh−1(ρn)−

zα/2√
n
, tanh−1(ρn) +

zα/2√
n

]}
which is equal to [

tanh

(
tanh−1(ρn)−

zα/2√
n

)
, tanh

(
tanh−1(ρn) +

zα/2√
n

)]
.
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Example: Now consider what happens if ∇f(θ) or f ′(θ) = 0. Consider X1, . . . , Xn
i.i.d.∼ N (θ,Σ), and

f(θ) = ||θ||2
2 . If

√
n(X̄n−θ)

D→ N (0,Σ), then
√
n(f(X̄n)−f(θ))

D→ N (0, θTΣθ). If θ = 0, then
√
nf(X̄n)

D→ 0,

i.e.
√
nf(X̄n)

P→ 0.

Theorem 20.3 If f : Rd → R is a function that is twice differentiable at θ, and if rn(Xn − θ)
D→ X and

∇f(θ) = 0, then

r2n(f(Xn)− f(θ))
D→ 1

2
XTHθX

where Hθ is the Hessian of f at θ, i.e. (Hθ)i,j = δ2f
δxiδxj

|θ.

Example: Consider X1, X2, . . .
i.i.d.∼ Expo(2), then E(Xi) = 1

2 for all i. Let Yn = min{X1, . . . , Xn} ∼
Expo(2n). Then n(Yn−0)

D→ X1. Let f(y) = cos(y), which means f ′(y) = −sin(y). Then n(cos(Yn)−1)
P→ 0.

Since we have that f ′′(y) = −cos(y), we know

n2(cos(Yn)− 1) = −1

2
n2Yn + oP (1)

D→ −1

2
X2

1 .

20.3 Characteristic Functions

We will soon discuss central limit theorems, but in order to do so, we need to introduce characteristic functions
first. That is because we will be checking the convergence condition for only this small class of functions.

Recall the definition of convergence in distribution, where we have that Xn
D→ X if E(f(Xn)) → E(f(X))

for all f ∈ F . We only need to check this for a small class F of characteristic functions.

Definition 20.4 The characteristic function of a random variable X is the function

t ∈ R→ φ(t) = E(eitX)

where i2 = −1 and so eiµ = cos(µ) + isin(µ).

Remark 20.5 Recall that φ(t) is continuous and bounded. In addition, if X ∈ Rd, then we have that

t ∈ Rd → φ(t) = E(eit
TX).

Example: Consider our favorite Z ∼ N (0, 1), then φ(t) = exp{−t2/2}.

What follows are some useful properties of characteristic functions (chf).

20.3.1 Properties of Characteristic Functions

1. φ(0) = 1, |φ(t)| ≤ 1;

2. φ(−t) = φ(t);

3. |φ(t+ h)− φ(t)| ≤ E(|eitX − 1|) i.e. φ is uniformly continuous;

4. the chf of aX + b is φaX+b = eitbφX(at);
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5. if E(|X|r) <∞ then φ(k)(0) = ikE(Xk).

Two things to remember about characteristic functions:

1. Inversion formula and uniqueness. Using φ, we can reconstruct the original CDF.

Theorem 20.6 X
D
= Y if and only if φX(t) = φY (t) for all t, X,Y, t ∈ R.

Lemma 20.7 (Cramer-Wold.) X
D
= Y for X,Y ∈ Rd if and only if aTX

D
= aTY for all a ∈ Rd.

2. Continuity theorem.

Theorem 20.8 Let {Pn} be a sequence of probability measures in (Rd,Bd) and P be a probability

measure in (Rd,Bd) with chfs {φn} and φ. Then Pn
D→ P if and only if φn(t)→ φ(t) for all t ∈ Rd.

Corollary 20.9 In Rd, Xn
D→ X if and only if αTXn

D→ αTX for all α ∈ Rd.

Note that these are special properties of Rd.

20.4 Central Limit Theorem

Theorem 20.10 (Lindeberg-Feller Central Limit Theorem for triangular arrays.) Let {rn} be a monotoni-
cally increasing sequence of integers. For each n, let Xn,1, . . . , Xn,rn be independent random variables with
E(Xn,k) = 0 and Var(Xn,k) = σ2

n,k. Let σ2
n =

∑
k σ

2
n,k and Sn =

∑
kXn,k. Assume the Lindeberg-Feller

condition is true:
1

σ2
n

rn∑
k=1

E(|X2
n,k|I{|Xn,k| > εσn})→ 0,∀ ε > 0,

then
Sn
σn

D→ N (0, 1).

The vanilla Central Limit Theorem follows from this more general theorem.

Example: If X1, . . . , Xn
i.i.d.∼ (µ, σ2), and the Lindeberg-Feller condition holds:

1

σ2
E(|X2

1 |I{|X1| > ε
√
nσ})→ 0,∀ n,

then √
n(Xn − µ)

D→ N (0, σ2).

Example: Now consider a counterexample. Let Xn,k ∼ Bern(1/k) and rn = n. The Lindeberg-Feller

condition is almost necessary. If maxk P (|Xn,k| > εσn) → 0 as n → ∞ for all n, and if Sn/σn
D→ N (0, 1),

then the Lindeberg-Feller condition holds.

Lastly, we consider the multivariate case.
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Theorem 20.11 (Multivariate Central Limit Theorem.) Let {rn} be a monotonically increasing sequence
of integers. For each n, let Xn,1, . . . , Xn,rn be independent random variables in Rd with mean zero. If for
all ε > 0,

rn∑
k=1

E(||Xn,k||2I{||Xn,k|| > ε})→ 0,

and
n∑
k=1

cov(Xn,k)→ Σ

then
n∑
k=1

Xn,k
D→ N (0,Σ).

Example: Consider X1, . . . , Xn
i.i.d.∼ (θ,Σ). Then

√
n(X̄n − θ)

D→ N (0,Σ).

Example: Another classic example is used in linear regression. Consider Y = Xβ + ε, where ε =

(ε1, . . . , εn)
i.i.d.∼ (0, σ2). Then the ordinary least squares (OLS) solution is β̂ = (XTX)−1XTY and

Cov(β̂) = σ2(XTX)−1. Then E(β̂) = β. (XTX)1/2(β̂ − β) = (XTX)−1/2XT ε =
∑n
i=1A

(i)εi where
A = (XTX)−1/2XT , and Cov(ΣiA

(i)εi) = σ2Ld. We need to verify that:

n∑
i=1

||A(i)||2E(ε2i I{||A(i)|| · |εi| > η})→ 0

for all η > 0.


