36-752: Advanced Probability Spring 2018

Lecture 22: April 24

Lecturer: Alessandro Rinaldo Scribe: Ron Yurko

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

22.1 Efficient Likelihood Estimation and Testing

See the following for more in depth proofs and results:

- [Chapter four of Wellner's notes](http://www.stat.cmu.edu/~arinaldo/Teaching/36752/S18/Notes/Wellner_Notes_Chapter4.pdf)
- [Wellner's text on Empirical Process theory](https://www.stat.washington.edu/jaw/RESEARCH/TALKS/Delft/emp-proc-delft-big.pdf)

22.1.1 Parametric Statistical Model

Let $\mathcal{P} = \{P_{\theta}; \theta \in \Theta\}$, collection of probability measures on sample space $(\mathcal{X}, \mathcal{B}) = (\mathbb{R}^s, \mathcal{B}^s)$ indexed by a set $\Theta \subset \mathbb{R}^d$ parameter space

- $d =$ dimension of paramter space, Θ open subset
- Ex: $\theta = (\mu, \Sigma) \in \mathbb{R}^d \times C_{d,t} = \Theta$, where $C_{d,t}$ is the cone of PD $d \times d$ matrices.

 P_{θ} to be $N(\mu, \Sigma), \mathcal{X} = \mathbb{R}^d$

22.1.2 Assumptions

- A0: Identifiability $\theta \neq \theta' \Rightarrow P_{\theta} \neq P_{\theta'}$
- A1: Support of $P_{\theta} = A \,\forall \,\theta$, (support of distribution is smallest closed set of S such that $P_A(S) = 1$)
- A2: $\exists \sigma$ -finite measure μ on sample space $(\mathcal{X}, \mathcal{B})$ such that $P_{\theta} \ll \mu \Rightarrow p_{\theta} = \frac{dP_{\theta}}{d\mu}$

We observe $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta_0}$ for some $\theta_0 \in \Theta$.

Notation $L_n(\theta) = \prod_{i=1}^n p_\theta(X_i)$ is the likelihood function, where $\ell_n(\theta) = \log L_n(\theta)$.

In HW5 we showed that under assumptions A0 - A2,

$$
P_{\theta_0}(L_n(\theta_0) > L_n(\theta)) \to 1 \,\forall \theta \neq \theta_0, n \to \infty
$$

(Used KL-divergence and LLN)

But because this actually makes no sense at all, we change the notation and replace P_{θ_0} by

$$
\mathbb{P}\Big(\{\omega: L_n(\theta_0)(\omega) > L_n(\theta)(\omega)\}\Big)
$$

meaning P_{θ_0} by

$$
p_{\theta_0}^n\Big(\{(x_1,\ldots,x_n)\in\mathbb{R}^{sn},L_n(\theta_0,x_1,\ldots,x_n)>L_n(\theta,x_1,\ldots,x_n)\}\Big)
$$

Definition 22.1 The value $\hat{\theta}_n$ that maximizes $L_n(\theta)$ over Θ , if it exists and is unique, is the MLE of θ_0 .

$$
\{\hat{\theta}_n\}=\{\theta^*: \theta^*=\underset{\theta\in\Theta}{sup}L_n(\theta)\}
$$

the MLE is a singleton set.

But in many cases the MLE (1) may not exist and (2) may not be unique. Instead of $\hat{\theta}_n$, we may want to compute θ_n , a root of the equation,

$$
\dot{\ell}_n(\theta) = \nabla \ell_n(\theta) = 0
$$

By the way \Rightarrow MLE need not be consistent either! Neymann-Scott n independent pairs,

$$
(X_n, Y_n) \sim N\left(\begin{bmatrix} \mu_n \\ \mu_i \end{bmatrix}, \sigma^2 I_2\right)
$$

<u>RHS:</u> Unknown parameters $\mu_1, \ldots, \mu_n, \sigma$. Interested in estimating σ^2 . Have simple estimator,

$$
Z_i = X_i - Y_i \sim N(0, 2\sigma^2)
$$

$$
\frac{1}{2n} \sum_{i=1}^n Z_i^2 \sim \frac{\sigma^2}{n} \chi_n^2
$$

which is unbiased and consistent!

Meanwhile the MLE of σ^2 ,

$$
\frac{1}{4n} \sum_{i=1}^{n} Z_i^2 \stackrel{p}{\rightarrow} \frac{\sigma^2}{2}
$$

is INCONSISTENT! Number of parameters is not fixed!!!

We move on to additional assumptions:

• A3: $\exists \Theta_0 \subset \Theta$ an open neighborhood of θ_0 such that

i $\log p_{\theta}(x)$ is twice continuously differentiable $a.e.[\mu]$

ii
$$
\left|\frac{\partial^3 \log p_{\theta}(x)}{\partial \theta_i \partial \theta_j \partial \theta_k}\right| \leq M_{i,j,k}(x) \ \forall \theta \in \Theta
$$
 where $M_{i,j,k}$ is such that $\mathbb{E}_{\theta_0}\left[M_{i,j,k}(x)\right]$ exists

• A4:

ii
$$
\mathbb{E}_{\theta_0}[\dot{\ell}_j(\theta_0)] = 0, \dot{\ell}_j(\theta_0)
$$
 is j^{th} coordinate of $\nabla \ell_n(\theta_0)$
iii $\mathbb{E}_{\theta_0}[\dot{\ell}_j^2(\theta_0)] < \infty$

iiiiii Let $I(\theta_0)$ be such that the i, j element is $\mathbb{E}_0[-\ddot{\ell}_{i,j}(\theta_0)] = \mathbb{E}_{\theta_0}[\dot{\ell}_j(\theta_0)\dot{\ell}_i(\theta_0)]$. Where $I(\theta_0)$ is the Fisher Information matrix assumed to be positive-definite and continuous function of θ in Θ_0 .

(In practicality we are approximating and making assumptions that are close enough, not going to actually be able to verify all of these.)

Let
$$
Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \dot{\ell}(\theta_0 | X_i)
$$
 and $\tilde{I}(\theta_0) = I^{-1}(\theta_0) \dot{\ell}(\theta_0)$ so that

$$
I^{-1}(\theta_0) = Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \tilde{\ell}(\theta_0, X_i)
$$

called the efficient influence function!

Theorem 22.2 Assume $A0 - A4$,

i With prob $\to 1$, $\exists \tilde{\theta}_n$ solution to likelihood equation $\dot{\ell}_n(\theta) = 0$ and $\tilde{\theta}$)n $\stackrel{p}{\to} \theta_0$ for some solution. ii $\tilde{\theta}_n$ is asymptotic linear:

$$
\sqrt{n}(\tilde{\theta}_n - \theta_0) = I^{-1}(\theta_0)Z_n + o_p(1)
$$

$$
\xrightarrow{D} N_d(0, I^{-1}(\theta_0))
$$

which is the the Cramer-Rao lower bound.

iii $2log\tilde{\lambda}_n = 2log \frac{L_n(\tilde{\theta}_n)}{L_n(\theta_0)}$ $\stackrel{D}{\rightarrow} \chi^2_d$, likelihood ratio test Wald Test: √ √

$$
\sqrt{n}(\tilde{\theta}_n - \theta_0)^T \tilde{I}_n(\tilde{\theta}_n) \sqrt{n}(\tilde{\theta}_n - \theta_0) \stackrel{D}{\rightarrow} \chi_d^2
$$

Where 3 ways of estimating Fisher Information matrix $\tilde{I}_n(\tilde{\theta}_n)$

- $I(\tilde{h}(\theta)_n)$ which we don't know how to compute
- Use $\frac{1}{n} \sum_{i=1}^n \dot{\ell}(\tilde{\theta}_n, X_i) \dot{\ell}^T(\tilde{\theta}_n, X_i)$
- \bullet $-\frac{1}{n}\sum_{i=1}^n \ddot{\ell}(\theta_n, X_i)$

<u>Rao Test:</u> $R_n = Z_n^T \tilde{I}(\tilde{\theta}_n) Z_n \to \chi_d^2$

Proof.

i Existence and Consistency

Let $a > 0$ and $Q_a = \{ \theta \in \Theta_0 : ||\theta - \theta_0|| = a \}.$ We will show that for all a small enough,

$$
P_{\theta_0}(\ell_n(\theta) < \ell_n(\theta_0) \forall \theta \in Q_d) \to 1
$$

Use Taylor Series Expansion:

$$
\frac{1}{n}(\ell_n(\theta) - \ell_n(\theta_0))
$$
\n
$$
= \frac{1}{n}(\theta - \theta_0)^T \dot{\ell}_n(\theta_0) - \frac{1}{2}(\theta - \theta_0)^T (-\frac{1}{n}\ddot{\ell}_n(\theta_0))(\theta - \theta_0)
$$
\n
$$
+ \frac{1}{6n} \sum_{i}^{d} \sum_{j}^{d} \sum_{k}^{d} (\theta_i - \theta_i^0)(\theta_j - \theta_j^0)(\theta_k - \theta_k^0) \sum_{i}^{n} \gamma_{ijk}(X_i) M_{ijk}(X_i)
$$

where $|\gamma_{ijk}(x_i)| \leq 1$.

Write this as:

$$
= S_1 + S_2 + S_3
$$

Next $S_1 \stackrel{p}{\to} 0$ by WLLN and Slutsky, $S_2 \stackrel{p}{\to} -\frac{1}{2}(\theta - \theta_0)I(\theta_0)(\theta - \theta_0)$ by the WLNN and Continuous Mapping Theorem where

$$
(\theta - \theta_0)I(\theta_0)(\theta - \theta_0) \ge \lambda_{min} ||\theta - \theta_0||^2 = \lambda_{min} a^2
$$

where λ_{min} is the smallest eigenvalue of $I(\theta_i)$,

$$
\inf_{x \neq 0} \frac{x^T A x}{x^T x} = \lambda_{min}(A)
$$

$$
x = (\theta - \theta_0)
$$

$$
A = I(\theta_0) S_3 \xrightarrow{p} \frac{1}{6} \sum_{i,j,k} (\theta_i - \theta_i^0)(\theta_j - \theta_j^0)(\theta_k - \theta_k^0) \mathbb{E}[\gamma_{ijk}(X_1)M_{ijk}(X_1)]
$$

$$
\leq \frac{1}{3} (da)^3 \sum_{ijk} m_{ijk}
$$

See next lecture notes to see rest of proof.