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22.1 Efficient Likelihood Estimation and Testing

See the following for more in depth proofs and results:

• Chapter four of Wellner’s notes

• Wellner’s text on Empirical Process theory

22.1.1 Parametric Statistical Model

Let P = {Pθ; θ ∈ Θ}, collection of probability measures on sample space (X ,B) = (Rs,Bs) indexed by a set
Θ ⊂ Rd parameter space

• d = dimension of paramter space, Θ open subset

• Ex: θ = (µ,Σ) ∈ Rd × Cd,t = Θ, where Cd,t is the cone of PD d× d matrices.

Pθ to be N(µ,Σ),X = Rd

22.1.2 Assumptions

• A0: Identifiability θ 6= θ′ ⇒ Pθ 6= Pθ′

• A1: Support of Pθ = A ∀ θ, (support of distribution is smallest closed set of S such that PA(S) = 1)

• A2: ∃ σ-finite measure µ on sample space (X ,B) such that Pθ << µ⇒ pθ = dPθ
dµ

We observe X1, . . . , Xn
iid∼ Pθ0 for some θ0 ∈ Θ.

Notation Ln(θ) =
∏n
i=1 pθ(Xi) is the likelihood function, where `n(θ) = logLn(θ).

In HW5 we showed that under assumptions A0 - A2,

Pθ0(Ln(θ0) > Ln(θ))→ 1 ∀θ 6= θ0, n→∞

(Used KL-divergence and LLN)
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http://www.stat.cmu.edu/~arinaldo/Teaching/36752/S18/Notes/Wellner_Notes_Chapter4.pdf
https://www.stat.washington.edu/jaw/RESEARCH/TALKS/Delft/emp-proc-delft-big.pdf
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But because this actually makes no sense at all, we change the notation and replace Pθ0 by

P
(
{ω : Ln

(
θ0

)
(ω) > Ln

(
θ
)
(ω)}

)
meaning Pθ0 by

pnθ0

(
{(x1, . . . , xn) ∈ Rsn, Ln(θ0, x1, . . . , xn) > Ln(θ, x1, . . . , xn)}

)
Definition 22.1 The value θ̂n that maximizes Ln(θ) over Θ, if it exists and is unique, is the MLE of θ0.

{θ̂n} = {θ∗ : θ∗ = sup
θ∈Θ

Ln(θ)}

the MLE is a singleton set.

But in many cases the MLE (1) may not exist and (2) may not be unique. Instead of θ̂n, we may want to
compute θ̃n, a root of the equation,

˙̀
n(θ) = O`n(θ) = 0

By the way ⇒ MLE need not be consistent either! Neymann-Scott n independent pairs,

(Xn, Yn) ∼ N
([
µn
µi

]
, σ2I2

)
RHS: Unknown parameters µ1, . . . µn, σ. Interested in estimating σ2. Have simple estimator,

Zi = Xi − Yi ∼ N(0, 2σ2)

1

2n

n∑
i=1

Z2
i ∼

σ2

n
χ2
n

which is unbiased and consistent!

Meanwhile the MLE of σ2,

1

4n

n∑
i=1

Z2
i

p→ σ2

2

is INCONSISTENT! Number of parameters is not fixed!!!

We move on to additional assumptions:

• A3: ∃Θ0 ⊂ Θ an open neighborhood of θ0 such that

i logpθ(x) is twice continuously differentiable a.e.[µ]

ii
∣∣∣∂3logpθ(x)
∂θi∂θj∂θk

∣∣∣ ≤Mi,j,k(x) ∀θ ∈ Θ where Mi,j,k is such that Eθ0
[
Mi,j,k(x)

]
exists

• A4:

ii Eθ0 [ ˙̀
j(θ0)] = 0, ˙̀

j(θ0) is jth coordinate of O`n(θ0)

iiii Eθ0 [ ˙̀2
j (θ0)] <∞

iiiiii Let I(θ0) be such that the i, j element is E0[−῭
i,j(θ0)] = Eθ0 [ ˙̀

j(θ0) ˙̀
i(θ0)]. Where I(θ0) is the

Fisher Information matrix assumed to be positive-definite and continuous function of θ in Θ0.
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(In practicality we are approximating and making assumptions that are close enough, not going to actually
be able to verify all of these.)

Let Zn = 1√
n

∑n
i=1

˙̀(θ0|Xi) and
∼
I (θ0) = I−1(θ0) ˙̀(θ0) so that

I−1(θ0) = Zn =
1√
n

n∑
i=1

˜̀(θ0, Xi)

called the efficient influence function!

Theorem 22.2 Assume A0 - A4,

i With prob → 1, ∃θ̃n solution to likelihood equation ˙̀
n(θ) = 0 and

∼
θ)n

p→ θ0 for some solution.

ii θ̃n is asymptotic linear:

√
n(θ̃n − θ0) = I−1(θ0)Zn + op(1)

D→ Nd(0, I
−1(θ0))

which is the the Cramer-Rao lower bound.

iii 2logλ̃n = 2logLn(θ̃n)
Ln(θ0)

D→ χ2
d, likelihood ratio test

Wald Test:
√
n(θ̃n − θ0)T Ĩn(θ̃n)

√
n(θ̃n − θ0)

D→ χ2
d

Where 3 ways of estimating Fisher Information matrix Ĩn(θ̃n)

• I((̃θ)n) which we don’t know how to compute

• Use 1
n

∑n
i=1

˙̀(θ̃n, Xi) ˙̀T (θ̃n, Xi)

• − 1
n

∑n
i=1

῭(θn, Xi)

Rao Test: Rn = ZTn Ĩ(θ̃n)Z)n
D→ χ2

d

Proof.

i Existence and Consistency

Let a > 0 and Qa = {θ ∈ Θ0 : ||θ − θ0|| = a}. We will show that for all a small enough,

Pθ0(`n(θ) < `n(θ0)∀θ ∈ Qd)→ 1

Use Taylor Series Expansion:

1

n
(`n(θ)− `n(θ0))

=
1

n
(θ − θ0)T ˙̀

n(θ0)− 1

2
(θ − θ0)T (− 1

n
῭
n(θ0))(θ − θ0)

+
1

6n

d∑
i

d∑
j

d∑
k

(θi − θ0
i )(θj − θ0

j )(θk − θ0
k)

n∑
i

γijk(Xi)Mijk(Xi)
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where |γijk(xi)| ≤ 1.

Write this as:
= S1 + S2 + S3

Next S1
p→ 0 by WLLN and Slutsky, S2

p→ − 1
2 (θ − θ0)I(θ0)(θ − θ0) by the WLNN and Continuous

Mapping Theorem where

(θ − θ0)I(θ0)(θ − θ0) ≥ λmin||θ − θ0||2 = λmina
2

where λmin is the smallest eigenvalue of I(θi),

inf
x 6=0

xTAx

xTx
= λmin(A)

x = (θ − θ0)

A = I(θ0)S3
p→ 1

6

∑
i,j,k

(θi − θ0
i )(θj − θ0

j )(θk − θ0
k)E[γijk(X1)Mijk(X1)]

≤ 1

3
(da)3

∑
ijk

mijk

See next lecture notes to see rest of proof.
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