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18.1 Continuous Mapping Theorem

Let {Xn}∞n=1 and X be random variables taking values in metric space (X , d). Recall that last time we

defined that Xn
D→ X when limn→∞ E[g(Xn)] = E[g(X)] for all bounded continuous function g. This

relationship can actually be generalized as follows:

Theorem 18.1. Xn
D→ X if and only if

lim
n→∞

E[g(Xn)] = E[g(X)]

for all bounded g that are continuous a.e.[µX ], or µX({x : g not continuous at x}) = 0.

Remark For the direct proof of this theorem, you can see Theorem 3.9.1 on Durrett’s book, or the section
on weak convergence of Billingsley’s book. You can also prove it by using Skorokhod’s Representation
Theorem given below:

Theorem 18.2 (Skorokhod’s Representation Theorem). Suppose Xn
D→ X, all taking values in metric space

(X , d), and the probability measure µ of X is separable. Then ∃ {Yn} and Y , taking values in (X , d), and

defined on some probability space (Ω,F , p) s.t. Xn
d
= Yn, X

d
= Y , and

Yn
a.s.→ Y,

where a.s. is w.r.t. p.

In a narrow sense, the so-called continuous mapping theorem concerns the convergence in distribution of
random variables, as we will discuss first. This theorem contains three parts. Roughly speaking, the main

part of it says that if Xn
D→ X and f is a a.e.[µX ] continuous function, then f(Xn)

D→ f(X).

Theorem 18.3 (Continuous Mapping Theorem, I). Let {Xn}∞n=1 be a sequence of random variables
and X another random variable, all taking values in the same metric space X . Let Y be a metric space and
f : X → Y a measurable function. Define

Cf = {x : g is continuous at x}.

Suppose that Xn
D→ X and P(X ∈ Cf ) = 1, then f(Xn)

D→ f(X).
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Proof. Denote the probability measure of Xn and X as µn and µ. Last time we saw that ∀B ⊂ Y closed,

f−1(B) ⊂ f−1(B) ∪ Ccf ,

where f−1(B) is the closure of {x ∈ X : f(x) ∈ B}. Therefore,

lim sup
n→∞

P(f(xn) ∈ B) = lim sup
n→∞

µn(f−1(B))

≤ lim sup
n→∞

µn(f−1(B))

Portmanteau
≤ µ(f−1(B))

≤ µ(f−1(B)) + µ(Ccf )

= µ(f−1(B)) = P(f(X) ∈ B).

This implies f(Xn)
D→ f(X) by Portamanteau Theorem.

Example 18.4. Suppose X1, X2, · · · are i.i.d. samples from a (well behaved) distribution with mean and

variance µ, σ2. By CLT we have
√
n
σ (X̄n − µ)

D→ N(0, 1). Now by CMT we have
[√

n
σ (X̄n − µ)

]2 D→ χ2
1.

Theorem 18.5 (Continuous Mapping Theorem, II). Let {Xn}∞n=1, X, {Yn}∞n=1 be random variables

taking values in a metric space with metric d. Suppose that Xn
D→ X and d(Xn, Yn)

P→ 0, then Yn
D→ X.

Theorem 18.6 (Continuous Mapping Theorem, III). Let {Xn}∞n=1 and {Yn}∞n=1 be random variables.

Suppose that Xn
D→ X and Yn

P→ c, then (Xn, Yn)
D→ (X, c). Furthermore, if Xn ⊥⊥ Yn and Yn

D→ Y , then

(Xn, Yn)′
D→ (X,Y )′, and X ⊥⊥ Y .

The CMT can also be generalized to cover the convergence in probability, as the following theorem does.

Theorem 18.7 (CMT for convergence in probability). If Xn
P→ X and f is continuous a.s.[µX ], then

f(Xn)
P→ f(X).

Remark Also notice the trivial fact that if Xn
a.s.→ X then f(Xn)

a.s.→ f(X). Therefore the CMT holds for
all these three modes of convergence.

Proof. Fix an arbitrary ε > 0, we want to show that

P(dY(f(Xn), f(X)) > ε)→ 0, as n→∞.

Fix δ > 0 and let Bδ be the subset of X consisting of all x’s such that ∃y ∈ X with dX (x, y) < δ and
dY(f(x), f(y)) > ε. Then

{X /∈ Bδ} ∩ {dY(f(Xn), f(X)) > ε} ⊂ {dX (Xn, X) ≥ δ}.

By the fact that Ac ∩B ⊂ C ⇒ B ⊂ A ∪ C, we have

P(dY(f(Xn), f(X)) > ε) ≤ P(X ∈ Bδ) + P(dX (Xn, X) ≥ δ) , T1 + T2.

Now T2 → 0 as n→∞ because Xn
P→ X. As for T1, notice that

P(X ∈ Bδ) = P(X ∈ Bδ ∩ Cf ) ↓ 0 as δ ↓ 0.

Thus
P(dY(f(Xn), f(X)) > ε) ≤ ε

2
+
ε

2
= ε.

For n large enough and δ small enough.
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Remark If f (defined on X ) is a.s.[µX ] continuous and g (defined on Y) is continuous, then g◦f is a.s.[µX ]
continuous. Therefore by theorem 18.1, we can get the CMT immediately.

Example 18.8. Suppose X1, X2, · · · are i.i.d. samples with mean and variance µ and σ2. We want to

estimate σ2 by an estimator σ̂2
n

P→ σ2. Consider σ̂2
n = 1

n

∑n
i=1(Xi − X̄n)2, where X̄n = 1

n

∑n
i=1Xi. By

WLLN we have
1

n

n∑
i=1

(Xi − µ)2
P→ σ2, X̄n

P→ µ.

Using this, together with the fact that

σ̂2
n =

1

n

n∑
i=1

(Xi − µ)2 − (X̄n − µ)2,

and (X̄n − µ)2
P→ 0 by CMT, we have

(
1

n

n∑
i=1

(Xi − µ)2, (X̄n − µ)2)′
P→ (σ2, 0)′.

Now let f(x, y) = x− y, which is continuous, by CMT we have

σ̂2
n = f(

1

n

n∑
i=1

(Xi − µ)2, (X̄n − µ)2)
P→ σ2.

A direct but useful corollary of continuous mapping theorem is the Slusky’s Theorem.

Theorem 18.9 (Slusky’s Theorem). If Xn
D→ X and Yn

D→ c, then

1. Xn + Yn
D→ X + c.

2. XnYn
D→ cX.

3. Xn/Yn
D→ X/c provided that c 6= 0.

Example 18.10. By Central Limit Theorem we have
√
n
σ (X̄ − µ)

D→ N(0, 1). By Law of Large Numbers we

have σ̂2
n
P→ σ2. Then by continuous mapping theorem σ̂n

P
σ and by Slusky’s Theorem,

√
n

σ̂n
(X̄ − µ) =

σ

σ̂n

√
n

σ
(X̄ − µ)

D→ N(0, 1).

18.2 Tightness

Definition 18.11. A sequence of probability measures {µn}∞n=1 is said to be tight if ∀ε > 0, ∃C compact s.t.

µn(C) > 1− ε, ∀n.

Equivalently, if Xn ∼ µn, then {Xn}∞n=1 is tight or bounded by probability if ∀ε > 0, ∃M s.t.

sup
n

P(‖Xn‖ > M) < ε.

In that case, we denote Xn = OP (1).
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Example 18.12. Cases where bounded in probability fails:

1. P(Xn = cn) = 1, and cn →∞.

2. Xn ∼ Uniform([−n, n]). (Note that then P(Xn ∈ [−M,M ]c) = 1− M
n ).

Theorem 18.13. Let {Xn}∞n=1 be a sequence of random variables taking values in Rd.

(i) If Xn
D→ X then {Xn} is tight.

(ii) Helly-Bray Selection Theorem. If {Xn} is tight, then ∃ {nk} s.t. Xnk

D→ X. Further, if every

convergent (in distribution) sub-sequence converges to the same X, then Xn
D→ X.

Proof of (i). X is a random variable, so ∀ε > 0, let M = M(ε) > 0 s.t. P(‖X‖ > M) < ε. Then by
Portmanteau Thm, for all n ≥ n0(ε,M),

P(‖Xn‖ ≥M) ≤ P(‖X‖ ≥M) + ε ≤ 2ε.

On the other hand, we can find M1 > M s.t. for all n < n0,

P(‖Xn‖ ≥M1) ≤ 2ε.

Now for n ≥ n0, we have

P(‖Xn‖ ≥M1) ≤ P(‖Xn‖ ≥M) ≤ P(‖X‖ ≥M) + ε ≤ 2ε.

Thus supn P(‖Xn‖ ≥M1) ≤ 2ε.

Theorem 18.14 (Polya Theorem). Suppose {Xn}∞n=1 and X take values in Rd, and Xnk

D→ X. If the
c.d.f. F of X is continuous, or equivalently µX � λd, where λd is the Lebesgue measure on Rd, then (Fn is
the c.d.f. of Xn)

sup
X∈Rd

|Fn(x)− F (x)| → 0.

Theorem 18.15 (Glivenko-Cantelli Theorem). Suppose X1, X2, · · · ,, Xi ∈ R are i.i.d. samples from a
distribution with c.d.f. F . For each n, let F̂n be the empirical c.d.f.

F̂n(x) =
1

n

n∑
i=1

1{Xn ≤ x}.

We have
‖F̂n − F‖∞ = sup

X∈R
|F̂n(x)− F (x)| a.s.→ 0.

Remark

• Notice that E[F̂n(x)] = F (x) for all x. Therefore by SLLN we have |F̂n(x) − F (x)| a.s.→ 0 for each
x. However the Glivenko-Cantelli Theorem is much stronger than this because it asserts the uniform
convergence.

• We often use another (even stronger) theorem instead, named after Aryeh Dvoretzky, Jack Kiefer, and
Jacob Wolfowitz, who in 1956 proved this inequality:

Theorem 18.16 (Dvoretzky-Kiefer-Wolfowitz). Under the same condition, for any ε > 0 and all n, we
have

P(‖F̂n − F‖∞ ≥ ε) ≤ 2 exp{−2nε2}.


