36-752: Advanced Probability

Lecture 2: February 1

Lecturer: Alessandro Rinaldo

Scribe: Riccardo Fogliato

Spring 2018

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Last time:

- let Ω be the universe set. \mathcal{F} is a σ -field over Ω if it satisfies the following properties:
 - 1. $\Omega \in \mathcal{F},$ 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F},$ 3. $A_1, A_2, \ldots \Rightarrow \bigcup_n A_n \in \mathcal{F},$

then (Ω, \mathcal{F}) is called measurable space;

• \mathcal{F} is a field over Ω if it satisfies properties 1),2) listed above, and 3) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

Example: field, but not σ -field.

Let \mathcal{U} be the collection of union of disjoint intervals of the form $(b, +\infty)$, \emptyset , $(-\infty + \infty)$, (a, b], where $-\infty \leq a < b$. \mathcal{U} is a field, but not a σ -field. Indeed:

- $(a,b) = \bigcup_n (a,b-\frac{1}{n}] \notin \mathcal{U};$
- $\{a\} = \bigcap_n [a \frac{1}{n}, a] \notin \mathcal{U}.$

New material:

Definition 2.1 Let \mathcal{A} be a collection of subsets of Ω . We call $\sigma(\mathcal{A})$ the σ -field generated by \mathcal{A} .

Definition 2.2 The σ -field generated by all open sets A (or equivalently by all closed sets) of the form (a, b), $-\infty < a < b < +\infty$, is called Borel σ -field, and it is denoted $\mathcal{B}(\mathbb{R}) = \sigma(A)$.

In \mathbb{R}^k the Borel σ -field \mathcal{B}^k is the σ -field generated by the open sets (union of the open balls), ie

$$\mathcal{B}(a,r) = \{ x \in \mathbb{R}^n : ||x - a|| < r \}.$$

More generally, if Ω is a topological space, the Borel σ -field is the σ -field generated by open sets. However, there exist non-Borel sets. **Definition 2.3** Let (Ω, \mathcal{F}) be a measurable space. A measure on this space is a function $\mu : \mathcal{F} \to \mathbb{R}_+$ satisfying

1.
$$\mu(\emptyset) = 0$$

2. A_1, A_2, \ldots are disjoint sets in $\mathcal{F} \Rightarrow \mu\left(\bigcup_n A_n\right) = \sum_n \mu(A_n)$ (countable additivity).

- if $\mu(\Omega) < +\infty$ the measure is finite, infinite otherwise;
- the triple $(\Omega, \mathcal{F}, \mu)$, where Ω is the universe set, \mathcal{F} is a σ -field on Ω and μ is a measure on the (Ω, \mathcal{F}) is called measure space;
- if $\mu(\Omega) = 1$, μ is a probability.

If \mathcal{F} is a field, then a measure on \mathcal{F} is a measure on a field.

Example: Let $\mathcal{F} = 2^{\Omega}$ and define $\forall A \subset \mathcal{F}, \mu(A) = |A|$.

Definition 2.4 A measure space is σ -finite if there exists a sequence of measurable sets A_1, A_2, \ldots such that $\mu(A_n) < \infty \ \forall n \ge 1$ and $\bigcup A_n = \Omega$.

Example: non σ -finite measure.

- counting measure on uncountable set;
- a measure s.t. $\mu(\emptyset) = 0, \mu(A) = \infty \forall A \neq \emptyset.$

Basic properties of measures: Let $(\Sigma, \mathcal{F}, \mu)$ be a measure space, then

- $\begin{array}{ll} 1. \ A \subseteq B \Rightarrow \mu(A) \leq \mu(B). \\ \textit{Proof:} \ B = A \cup (B \setminus A), \ \text{hence} \ \mu(B) = \mu(A) + \mu(B \setminus A) \geq \mu(A). \end{array}$
- 2. $\mu(A) < \infty$ and $\mu(B) < \infty \Rightarrow \mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$.

3. (countable sub-additivity:) A_1, A_2, \ldots countable sequence of measurable sets $\Rightarrow \mu \left(\bigcup_n A_n\right) \leq \sum_n \mu(A_n)$. *Proof*: let $B_1 = A_1$ and for $n \geq 2$ let $B_n = A_n \cap A_{n-1}^c \cap A_{n_2}^c \cap \cdots \cap A_1^c = A_n \setminus \bigcup_{i=1}^{n-1} B_i$.

We have $\bigcup_{n} A_n = \bigcup_{n} B_n$, and $A_n = B_n \cup (A_n \cap \bigcup_{i=1}^{n-1} B_i)$. Hence

$$\mu(\bigcup_{n} A_{n}) = \mu(\bigcup B_{n}) = \sum_{n} \mu(B_{n}) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_{i}) \le \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_{i}) = \sum_{n} (A_{n}).$$

4. (monotonicity and continuity of μ :) A_1, A_2, \ldots monotone sequence of measurable sets $\Rightarrow \mu(\lim_n A_n) = \lim_n \mu(A_n)$ if

- A_n is increasing or
- A_n is decreasing and $\exists i \in \mathbb{N}$ s.t. $\mu(A_i) < \infty$.

Proof:

• let $A_{\infty} = \bigcup_{n} A_{n} = \lim_{n} A_{n}$. Let $A_{1} = B_{1}$ and, for $n \ge 2$, $B_{n} = A_{n} \setminus A_{n-1}$. Moreover $A_{n} = \bigcup_{i=1}^{n} B_{i}$ and $\bigcup_{n} A_{n} = \bigcup_{n} B_{n}$. Hence

$$\mu(A_{\infty}) = \mu\left(\lim_{n} A_{n}\right) = \mu(\bigcup_{n} A_{n}) = \sum_{n} \mu(B_{n}) = \lim_{n} \sum_{i=1}^{n} \mu(B_{i}) = \lim_{n} \mu(A_{n}).$$

• w.l.o.g. assume that $\mu(A_1) < \infty$. Then, since $A_n \downarrow \bigcap_n A_n = A_\infty$, $A_1 \setminus A_n \uparrow A_1 \setminus A_\infty$ and by the finiteness of $\mu(A_1)$ we obtain $\mu(A_1 \setminus A_n) \uparrow \mu(A_1 \setminus A_\infty)$ as $n \to \infty$. Hence

$$\mu(A_1) - \mu(A_n) \uparrow \mu(A_1) - \mu(A_\infty) \Longleftrightarrow \mu(A_n) \downarrow \mu(A_\infty).$$

Definition 2.5 A property over the elements of Ω is said to hold almost surely (a.s.) if it holds over a measurable set A such that $\mu(A^c) = 0$.

Equivalently, the measure is said to hold almost everywhere (a.e.).

Lemma 2.6 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and A_1, A_2, \ldots be a sequence of measurable sets. Assume μ to be finite. Then

- 1. $\mu(\liminf_n A_n) \leq \liminf_n \mu(A_n) \leq \limsup_n \mu(A_n) \leq \mu(\limsup_n (A_n);$
- 2. if $\lim_{n \to \infty} A_n = A$, then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.

Proof: 2) follows from 1).

1) Let
$$B_n = \bigcap_{i=n}^{\infty} A_i$$
 and $C_n = \bigcup_{i=n}^{\infty} A_i$. Then $B_n \uparrow \liminf_n A_n$ and $C_n \downarrow \limsup_n A_n$. Hence
 $\mu(A_n) \ge \mu(B_n) \ \forall n \Rightarrow \liminf_n \mu(A_n) \ge \liminf_n \mu(B_n) = \lim_n \mu(B_n) = \mu(\liminf_n A_n).$

Similarly,

$$\mu(A_n) \ge \mu(B_n) \forall n \Rightarrow \limsup_n \mu(A_n) \ge \limsup_n \mu(C_n) = \lim_n \mu(C_n) = \mu(\limsup_n A_n).$$

Uniqueness

Example: Let $(\mathbb{R}, \mathcal{B})$ be a measurable space, and define on it the measure $\mu((-\infty, a]) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} dx$. Does there exist another probability distribution that agrees on all the sets of the form $(-\infty, a]$, $a \in \mathbb{R}$? The answer is no.

Definition 2.7 Let Ω be the universe set. A collection \mathcal{A} of subsets of Ω is called:

• π -system if $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A};$

- λ -system if
 - $\begin{aligned} &-\Omega \in \mathcal{A}, \\ &-A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}, \\ &-if A_1, A_2, \dots \text{ is a sequence of disjoint sets in } \mathcal{A}, \text{ then } \bigcup_n A_n \in \mathcal{A}. \end{aligned}$

Example: $\mathcal{A} = \{(-\infty, a], a \in \mathbb{R}\}$ is a π -system.

Theorem 2.8 (Uniqueness) If μ_1 and μ_2 are measures on a measurable space (Ω, \mathcal{F}) s.t.

- 1. $\mathcal{F} = \sigma(\mathcal{F})$ is some Π -system,
- 2. μ_1 and μ_2 are $\sigma\text{-finite}$ and they agree on Π

then they agree on \mathcal{F} .