
STAT 36-752: Advanced Probability Overview Spring 2018

Lecture 1: February 13
Lecturer: Alessandro Rinaldo Scribes: Shamindra Shrotriya

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

1.1 Last Time

f : Ω→ R with measure space (Ω,F , µ)

We want to define the notion of an integral “
∫

Ω
f(w)dµ(ω)”

1.2 Simple Functions

f(ω) =
∑n
i=1 aiIAi

(w) where {a1, a2, . . . an} are distinct reals and {A1, A2, . . . An} is a partition of Ω.

Aside: Motivation on Randomness in measure theoretic probability: “We are concerned with defining
properties of probability that are coherent and consistent. We will learn the grammar of probability in this
class.”

Definition 1.1 The integral of a simple function in canonical form is:∫
fdµ =

∫
Ω

f(w)dµ(ω) (1.1)

=

n∑
i=1

aiIAi(w) (1.2)

Where values of {−∞,∞} are allowed

We note that by this definition, we can have 3 possible outcomes:

1. If
∫
fdµ < +∞ then it exists

2. If
∫
fdµ ∈ {−∞,∞} then it does not exist. In this case we say that f is not integrable.

3.
∫
fdµ is undefined otherwise

1.2.1 Conventions

We adopt the following conventions for our calculations
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1. +∞ =∞

2. ∞× 0 = 0

3. ∞+∞ =∞

4. −∞−∞ = −∞

5. x×∞ = sign(x)×∞,∀x ∈ R

6. ∞−∞ is undefined

Definition 1.2 (Integral of a non-negative measurable function)∫
fdµ = sup

φ simple
0≤φ≤f

∫
φdµ (1.3)

= sup
A1,A2,...An

finite partition of Ω

n∑
i=1

µ(Ai)× (inf f(ω)) (1.4)

Definition 1.3 ∫
fdµ =

∫
f+dµ+

∫
f−dµ (1.5)

f+(ω) = max{0, f(ω)} (1.6)

f−(ω) = −min{0, f(ω)} (1.7)

We note the following based on the above definition:

• f is integrable if both f+ and f− are integrable

• If either f+ or f− have infinite integral then f has infinite integral

• f is integrable if when
∫
|f |dµ is integrable since |f | = f+ + f−

Lemma 1.4 If f ≤ g a.e [µ] then
∫
f ≤

∫
g

Note that we say a property holds a.e [µ] if ∃ a measurable set A ⊆ Ω s.t µ(Ac) = 0 and the property does
not hold on Ac.

Proof:Assume f ≥ 0, g ≥ 0. Let A = {ω ∈ Ω | f(ω) ≤ g(ω)} =⇒ µ(Ac) = 0. Let {A1, A2, . . . An} be a
partition of Ω. Now we have:

n∑
i=1

[
inf
ω∈Ai

f(ω)

]
µ(Ai) =

n∑
i=1

[
inf
ω∈Ai

f(ω)

]
µ(Ai ∩A) (1.8)

≤
n∑
i=1

[
inf

ω∈Ai∩A
f(ω)

]
µ(Ai ∩A) (taking inf over smaller set Ai ∩A)

=

n∑
i=1

[
inf

ω∈Ai∩A
g(ω)

]
µ(Ai ∩A) (since f ≤ g a.e [µ])

≤
∫
gdµ (Think about {A1 ∩A,A2 ∩A, . . . An ∩A} and Ac)

⇒
∫
fdµ ≤

∫
gdµ (1.9)
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Corollary 1.5 If f and g are integrable then

|
∫

(f − g) dµ| ≤
∫
|f − g|dµ

Proof:Homework Exercise!

Integrals can express sums. Let µ be a counting measure on Ω. If A ⊆ Ω A measurable. Then f =∑n
i=1 aiIAi

is the canonical form. Then
∫
fdµ =

∑
ω f (ω). If µ is the Lebesgue measure on (R,B) then∫

fdµ is the Lebesgue integral.

1.2.2 Riemann vs. Lebesgue Integral

∫
A

fdµ =

∫
Ω

IA(ω)f(ω)dµ

The Lebesgue integral is defined over a broader class of sets.

Theorem 1.6 If f is continuous on [a, b] and has a Riemann integral then it is equal to the Lebesgue integral.
If f is bounded it is Riemann integrable if and only if the set of discontinuities of f has 0 Lebesgue measure
and the 2 integrals coincide

Claim If f : I = [a,∞) → R is Lebesgue integrable over [a, b] ∀b ≥ a and
∫ b
a
|f |dµ ≤ M for some

M > 0, b ≥ a then f is Lebesgue integrable over I and

lim
b→∞

∫ b

a

f(x)d(x) =

∫
I

f(x)d(x)

Example f(x) = 1
1+x2 , x ∈ R, a ≤ b. We then have

∫ b

a

f(x)d(x) = arctan b− arctan a ≤ π (1.10)∫ +∞

−∞
f(x)d(x) = lim

a→−∞

∫ 0

a

f(x)d(x) + lim
b→∞

∫ b

0

f(x)d(x) (1.11)

= π (1.12)

Problem It may happen that f(x) = 1
1+x2 , x ∈ R, a ≤ b. We then have

∫ b
a
f(x)d(x) exists and equals

the Riemann integral and limb→∞
∫ b
a
f(x)d(x) also exists. This means that f has an improper Riemann

integral but
∫ b
a
|f |dµ may not exist!
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Example I = [0,∞) f(x) = (−1)n

n , n− 1 ≤ x < n. If b > 0, let m = dbe least integer ≥ b. We then have∫ b

a

f(x)d(x) =

∫ m

0

f +

∫ b

m

f (1.13)

=

n∑
i=1

(−1)n

n
+
b−m
m+ 1

(−1)n (1.14)

→ log 2 as b→∞ (1.15)

But

∫ m

0

|f |dx =∞→ not the Lebesgue integral! (1.16)

1.2.3 Properties of Integrals

1. If f ≥ 0 a.e. [u] then
∫
fdµ ≥ 0

2. If f = g a.e. [u] and
∫
fdµ or

∫
gdµ exists so does the other and they equal each other

3. What about f + g? If f, g are both integrable then
∫

(f + g)dµ =
∫
fdµ+

∫
gdµ

1.2.4 Limit Theorems and Standard Machinery

1. Fatou’s Lemma

2. Monotone Convergence Theorem

3. Dominated Convergence Theorem

Lemma 1.7 (Fatou’s) Let {fn}∞n=1 be a sequence of non-negative measurable functions. Then we have∫
Ω

lim inf
n

fn(ω) ≤ lim inf
n

∫
Ω

fn(ω)dω

Theorem 1.8 (Monotone Convergence Theorem) Let {fn}∞n=1 be a sequence of non-negative measur-
able functions. Let f be a measurable function such that:

1. fn ≤ f ∀n a.e. [u]

2. limn→∞ fn = f a.e. [u]

Then limn→∞
∫
fndµ =

∫
fdµ

Proof:

fn ≤ f ∀n a.e. [u] (1.17)

⇒
∫
fndµ ≤

∫
fdµ ∀n (1.18)

lim inf
n

∫
fndµ ≤ lim sup

n

∫
fndµ︸ ︷︷ ︸

≤
∫
fdµ

(1.19)

≤
∫
fdµ (1.20)
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Also ∫
lim inf

n
fndµ︸ ︷︷ ︸

=f

≤ lim inf
n

∫
fdµ (By Fatou’s Lemma)

=

∫
fdµ (1.21)

⇒ lim sup
n

∫
fndµ ≤

∫
fdµ (1.22)

≤ lim inf
n

∫
fndµ (1.23)

(1.24)

Combining the above we have: ∫
fdµ = lim inf

n

∫
fndµ (1.25)

= lim sup
n

∫
fndµ (1.26)

= lim
n

∫
fndµ (1.27)

(1.28)

1.2.5 Application : Standard Machinery

Theorem 1.9 If
∫
fdµ and

∫
gdµ exist then

∫
(f + g)dµ =

∫
fdµ+

∫
gdµ

The standard machinery is used to demonstrate the integrability of a class of functions as follows:

1. Prove the result for non-negative simple functions in the class

2. Prove it for non-negative measurable functions in the class, using the fact that if f ≥ 0 ∃ simple
functions fn ≥ 0 s.t. fn ↑ f and apply Monotone Convergence Theorem.

3. Do this for positive and negative part of the functions in the class


