
36-752: Advanced Probability Spring 2018

Lecture 7: February 20
Lecturer: Alessandro Rinaldo Scribes: Yifan Wu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

7.1 Measure on Product Spaces

7.1.1 Measurable product spaces

Definition 7.1 (Product σ-Field) Let (Ω1,F1), (Ω2,F2) be two measurable spaces. The product σ-field
F1 ⊗ F2 on Ω1 × Ω2 is defined as the σ-field generated by the collection of all sets of the form {A1 × A2 :
A1 ∈ F1, A2 ∈ F2}. The sets in this collection are called measurable rectangles.

Remark 7.2 F1⊗F2 6= F1×F2 because F1×F2 may not be closed on Ac or A1∪A2. (Consider (R2,B2).)

Remark 7.3 The collection of measurable rectangles is a π-system.

Definition 7.4 (Coordinate Projection) For i = 1, 2 the coordinate projection πi : Ω1 × Ω2 7→ Ωi is
defined as πi(ω1, ω2) = ωi.

Claim 7.5 F1 ⊗F2 is the smallest σ-field such that the coordinate projections are all measurable.

Claim 7.6 The k dimensional Borel σ-field satisfies Bk = B1 ⊗ ...⊗ B1.

Proposition 7.7 (Properties) Let (Ω1,F1), (Ω2,F2) be two measurable spaces:

• For each B ∈ F1 ⊗ F2 and each ω1 ∈ Ω1 the ω1-section of B, Bω1
= {ω2 ∈ Ω2 : (ω1, ω2) ∈ B} is in

F2.

• If µ2 is a σ-field on (Ω2,F2) then ∀B ∈ F1 ⊗F2 the function f : Ω1 7→ R defined by f(ω1) = µ2(Bω1)
is measurable.

• If f : Ω1 × Ω2 7→ (S,A) is measurable then ∀ω1 ∈ Ω1 the function fω1
: Ω2 7→ S defined by fω1

(ω2) =
f(ω1, ω2) is measurable.

• If µ2 is σ-finite on (Ω2,F2) and f : Ω1 × Ω2 7→ R be measurable and nonnegative then the function
g : Ω1 7→ R̄0+ defined by g(ω1) =

∫
f(ω1, ω2)dµ2(ω2) is measurable.
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Proof of the first property:

Proof: Fix ω1 ∈ Ω1. Let Cω1
= {B ∈ F1 ⊗F2 : Bω1

∈ F2}. First show that Cω1
is a σ-field :

• For B = Ω1 × Ω2, Bω1
= {ω2 ∈ Ω2 : (ω1, ω2) ∈ Ω1 × Ω2} = Ω2 ∈ F2.

• For B ∈ Cω1
, we have Bω1

∈ F2 thus Bcω1
∈ F2. Consider (Bc)ω1

= {ω2 ∈ Ω2 : (ω1, ω2) ∈ Bc}. Recall
that Bω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ B}. We have (Bc)ω1 ∩ Bω1 = ∅ and (Bc)ω1 ∪ Bω1 = Ω2. Hence
(Bc)ω1 = Bcω1

and (Bc)ω1 ∈ F2. Since B ∈ Cω1 ⊂ F1 ⊗ F2 we have Bc ⊂ F1 ⊗ F2. Therefore,
Bc ∈ Cω1

.

• Consider B =
⋃∞
n=1Bn where Bn ∈ Cω1 for all n, i.e. (Bn)ω1 ∈ F2 for all n. We have Bn ∈ F1 ⊗ F2

for all n so B ∈ F1 ⊗F2. We will show Bω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈
⋃∞
n=1Bn} =

⋃∞
n=1(Bn)ω1

:

For any ω2 ∈ Bω1
there exists n such that (ω1, ω2) ∈ Bn. Hence ω2 ∈ (Bn)ω1

and ω2 ∈
⋃∞
n=1(Bn)ω1

.

For any ω2 ∈
⋃∞
n=1(Bn)ω1 there exists n such that ω2 ∈ (Bn)ω1 . Hence (ω1, ω2) ∈ Bn and (ω1, ω2) ∈⋃∞

n=1Bn, which means ω2 ∈ Bω1 .

Now we have shown that Bω1
=
⋃∞
n=1(Bn)ω1

∈ F2 which indicates that B ∈ Cω1
holds.

Therefore Cω1
is a σ-field .

Now consider A1 ∈ F1, A2 ∈ F2. Then we have (A1×A2)ω1 = A2 if ω1 ∈ A1 and (A1×A2)ω1 = ∅ if ω1 /∈ A1.
In any case we have (A1 × A2)ω1

∈ F2 and thus A1 × A2 ∈ Cω1
. Therefore, all measurable rectangles in

the form of A1 × A2 are contained in Cω1
. According to the fact that Cω1

is a σ-field and the definition of
F1 ⊗ F2 we have Cω1

⊃ F1 ⊗ F2. We also have Cω1
⊂ F1 ⊗ F2 by definition. Therefore Cω1

= F1 ⊗ F2,
which means, for all B ∈ F1 ⊗F2, Bω1

∈ F2 holds.

Lemma 7.8 Let (Ω1,F1), (Ω2,F2), (S1,A1) and (S2,A2) be measurable spaces. For i = 1, 2 let fi : Ωi 7→
Si be a function. Define function g : Ω1 × Ω2 7→ S1 × S2 by g(w1, w2) = (f1(ω1), f2(ω2)). Then g is
F1 ⊗F2/A1 ⊗A2 measurable if and only if fi is Fi/Ai measurable for i = 1, 2.

7.1.2 Product measures

Theorem 7.9 (Product measure) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measurable spaces where µ1

and µ2 are σ-finite measures. There exists a unique measure µ on (Ω1 × Ω2,F1 ⊗F2) that satisfies µ(A1 ×
A2) = µ1(A1)µ2(A2) for all A1 ∈ F1 and A2 ∈ F2. This measure is called the product measure, written
as µ = µ1 × µ2.

Proof:

Uniqueness:

First we show that any such measure must be σ-finite. Since µ1 and µ2 are σ-finite there exist {An}∞n=1 ∈ F1

and {Bn}∞n=1 ∈ F2 such that
⋃∞
n=1An = Ω1,

⋃∞
n=1Bn = Ω2, µ1(An) and µ2(Bn) are finite for all n. Consider⋃

(i,j)∈N2 Ai ×Bj . For and (ω1, ω2) ∈ Ω1 ×Ω2 there exists i, j such that ω1 ∈ Ai and ω2 ∈ Bj , which means

(ω1, ω2) ∈ Ai × bj . Hence
⋃

(i,j)∈N2 Ai × Bj = Ω1 × Ω2. For any (i, j) ∈ N2 we have µ(Ai × Bj) =

µ1(Ai)µ2(Bj) <∞. Since N2 is a countable set we can conclude that µ is σ-finite.

Suppose there are two measures µ and µ′ satisfying the condition in the theorem. Recall that the collection
of measurable rectangles {A1 ×A2 : A1 ∈ F1, A2 ∈ F2} is a π-system. µ and µ′ are both σ-finite and agree
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on this π-system. By Uniqueness theorem they agree on the generated σ-field F1 ⊗ F2, i.e., µ = µ′, which
means such measure must be unique.

Existence:

For any B ∈ F1 ⊗ F2 let µ(B) =
∫

Ω1
µ2(Bω1)dµ1(ω1) where Bω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ Ω1 × Ω2} as

introduced previously. Then µ is a measure.

For any A1 ∈ F1, A2 ∈ F2,

µ(A1 ×A2) =

∫
Ω1

µ2((A1 ×A2)ω1
)dµ1(ω1) =

∫
Ω1

1A1
µ2(A2)dµ1(ω1) = µ2(A2)

∫
Ω1

1A1
dµ1(ω1) = µ1(A1)µ2(A2) .

Hence such measure exists.

Theorem 7.10 (Tonelli/Fubini theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measurable spaces
where µ1 and µ2 are σ-finite measures. Let µ = µ1 × µ2 be the product measure on (Ω1 ×Ω2,F1 ⊗F2). Let
f : Ω1×Ω2 7→ R be a nonnegative measurable function. (Can be extended to integrable functions with respect
to the product measure µ, i.e.

∫
|f |dµ <∞.) Then the following holds:∫

fdµ =

∫ [∫
f(ω1, ω2)dµ1(ω1)

]
dµ2(ω2) =

∫ [∫
f(ω1, ω2)dµ2(ω2)

]
dµ1(ω1) .

7.2 Independence

Definition 7.11 (Independence between collection of sets) Let (Ω,F , P ) be a probability space. For
two collections C1, C2 ⊂ F , we say that C1 and C2 are independent if P (A1 ∩ A2) = P (A1)P (A2) for all
A1 ∈ C1, A2 ∈ C2.

Definition 7.12 (Independence between random variables) Let (Ω,F , P ) be a probability space. For
i = 1, 2 let (Si,Ai) be measurable spaces and Xi : Ω 7→ Si be F/Ai measurable functions. (Hence X1 and
X2 are random variables.) Let σ(Xi) be the σ-field X−1

i (Ai) ⊂ F generated by function Xi. We say that X1

and X2 are independent if σ(X1) and σ(X2) are independent collections.

Theorem 7.13 Let X1, X2 be two random variables following the definition above. Define another random
variable X : Ω 7→ S1×S2 by X = (X1, X2). Then its distribution µX (induced measure on (S1×S2,A1⊗A2))
is the product measure µX1

× µX2
if and only if X1 and X2 are independent.

Proof: By definition X1 and X2 are independent if and only if for all B1 ∈ X−1
1 (A1), B2 ∈ X−1

2 (A2) we have
P (B1 ∩ B2) = P (B1)P (B2). It remains to show that µX = µX1 × µX2 if and only if ∀B1 ∈ X−1

1 (A1), B2 ∈
X−1

2 (A2), P (B1 ∩B2) = P (B1)P (B2).

Proof of if. Suppose ∀B1 ∈ X−1
1 (A1), B2 ∈ X−1

2 (A2), P (B1 ∩ B2) = P (B1)P (B2) holds. For any A1 ∈
A1, A2 ∈ A2, we have

µX(A1 ×A2) = P ({ω ∈ Ω : X1(ω) ∈ A1, X2(ω) ∈ A2}) = P
(
X−1

1 (A1) ∩X−1
2 (A2)

)
= P (X−1

1 (A1))P (X−1
2 (A2)) = µX1

(A1)µX2
(A2) .

Therefore, µX = µX1
× µX2

.
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Proof of only if. Suppose µX = µX1
× µX2

. Then for all B1 ∈ X−1
1 (A1), B2 ∈ X−1

2 (A2),

P (B1 ∩B2) = P (X−1
1 (X1(B1)) ∩X−1

2 (X2(B2)) = P (X−1(X1(B1)×X2(B2)))

= µX(X1(B1)×X2(B2)) = µX1
(X1(B1))µX2

(X2(B2)) = P (B1)P (B2) .

7.3 Stochastic Processes

Definition 7.14 Let (Ω,F , P ) be a probability space and T be a set. For each t ∈ T , there is a measurable
space (Xt,Ft) and a random variable Xt : Ω 7→ Xt. The collection {Xt : t ∈ T} is called a stochastic
process, and T is called the index set.

Example 7.15 Let T = {1, ..., k}. A vector of random variables X = [X1, ..., Xk] is a stochastic process.

Example 7.16 (Random probability measure) Let Θ : Ω 7→ R be a random variable, f : R×R 7→ R be

a nonnegative function such that
∫
R f(x, θ)dx = 1 for all θ ∈ R. For example, f(x, θ) = 1√

2π
exp

(
− (x−θ)2

2

)
.

Let T = B. For each B ∈ B consider random variable XB : Ω 7→ R defined by XB(ω) =
∫
B
f(x,Θ(ω))dx.

Then the stochastic process {XB : B ∈ B} is a random probability measure.

Example 7.17 (Empirical measure) Let X1, ..., Xn be i.i.d. samples from some P on R. Define the
empirical measure Pn on (R,B) as Pn(B) = 1

n

∑n
i=1 1{Xi ∈ B} for all B ∈ B. (Why introduced here?)

Remark 7.18 The product set X =
∏
t∈T Xt can be viewed as the set of all functions f : T 7→

⋃
t∈T Xt such

that f(t) ∈ Xt for all t ∈ T . For example, when Xt = Y for all t, X =
∏
t∈T Xt = YT is the set of all functions

from T to Y. In a stochastic process, the random variable X : Ω 7→ X defined by X(ω) = {Xt(ω) : t ∈ T}
induces a probability distribution over X =

∏
t∈T Xt, i.e. over all functions f : T 7→

⋃
t∈T Xt such that

f(t) ∈ Xt for all t ∈ T .


