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1. Stochastic Process:

Let T be a index set. ∀t ∈ T , Xt: a random variable on (Ω,F , P ) taking values in (Xt,Ft).

i.e., Xt: ω ∈ Ω 7→ Xt(w).

2. Also, this can be represented as a set of random functions from T into X = ∪t∈TXt.

i.e., ω 7→ f(w, t): a random function at t.

New Material:

8.1 Stochastic Process

8.1.1 Projections and Cylinder sets

How do we represent probability distributions on ∩t∈TXt? We first need the notion of measurability on the
space of functions from T into X .

Definition 8.1

1) For t ∈ T , πt : X → Xt, given by πt(f) = f(t), is called a projection or an evaluation functional.

2) A one-dimensional cylinder set is a set of the form Πt∈TBt where Bt1 ∈ Ft1 for one t1 ∈ T , and
Bt = Xt, ∀t 6= t1.

3) A k-dimensional cylinder set is a set of the form Πt∈TBt where Bti ∈ Fti , i = 1, . . . , k for some
{t1, . . . , tk} ⊂ T , and Bt = Xt, ∀t /∈ {t1, . . . , tk}.

Definition 8.2 The product σ-field, Πt∈TFt, is the smallest σ-field on Ω containing all one-dimensional
cylinder sets.

Note that, if T is finite, this definition is equivalent to the previous definition on product σ-fields.

Lemma 8.3 The product σ-field is the smallest σ-field such that all πt, t ∈ T are measurable.
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Figure 8.1: two examples of realizations of a two-dimensional cylinder

Proof For a fixed t1 ∈ T and for each Bt1 ∈ Ft, π
−1
t1 (Bt1) = Πt∈TBt where Bt = Xt, ∀t 6= t1.

Theorem 8.4 Define X : Ω→ X by setting X(ω) to be a function f such that

f(t) = Xt(w), ∀t

Then, X is F/ΠtFt-measurable if and only if Xt is F/Ft-measurable.

8.1.2 Kolmogorov’s extension theorem

Now, how do we specify probability on stochastic processes as a set of realizations? We cannot describe
the exact probability distribution for the realizations on every t. However, with the Kolmogorov’s extension
theorem, we can handle with the probability of realizations on the finite number of t’s.

Definition 8.5 For v ⊂ T , let (Xv,Fv) be the product space and the product σ-field restricted to v. Also,
suppose that Pv is a measure on (Xv,Fv). For u ⊂ v, the projection on Pv, πu(Pv), is defined to be

[πu(Pv)](B) := Pv({x ∈ Xv : xu ∈ B}) for B ∈ Fu

, which is also said to be the marginal distribution of Pv over Xu.

Theorem 8.6 (Kolmogorov’s extension theorem) Let Xt = R, ∀t ∈ T . Then, X = RT . Assume that for
every finite subset v ⊂ T , Pv is well-defined over (Rv,B|v|) and that Pv is consistent. (i.e., πu(Pv) = Pu.)
Then, ∃!P on (RT ,BT ) such that πv(P ) = Pv, ∀v ⊂ T .

Note again that, if T is finite, then it is equivalent to the case of product measures of random vectors.

8.1.3 Example: Brownian motion

Suppose that Wt : t ≥ 0 satisfies

1. W0 = 0 with probability 1.

2. If 0 ≤ t0 < t1 < . . . < tk, Wti −Wti−1 are mutually independent.

i.e., Wt’s have independent increments.

3. ∀0 ≤ s < t, Wt −Ws ∼ N (0, t).
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Some useful facts of Wt are as follows:

1. E[Wt] = 0

2. E[W 2
t ] = t, ∀t ≥ 0

∵Wt = Wt = Wt −W0 ∼ N (0, t).

3. Cov[Ws,Wt] = E[Ws(Wt −Ws)] + E[W 2
s ]

= E[(Ws −W0)(Wt −Ws)] + E[W 2
s ]

= E[W 2
s ]since Ws −W0 ⊥Wt −Ws with 0 ≤ s < t

= s = min{s, t}.

To apply the Kolmogorov’s extension theorem, we need a distribution of (Wt1 , . . . ,Wtk), 0 ≤ t1 < . . . < tk.
Notice that (Wt1 ,Wt2−Wt1 , . . . ,Wtk−W − tk) has a joint multivariate Gaussian distribution with the mean
0 and the diagonal covariance matrix. Thus, (Wt1 , . . . ,Wtk) has a pdf ,

f(x1, . . . , xk) = Πk
i=1

1√
2π(ti − ti−1)

exp

(
− (xi = xi−1)2

2(ti − ti−1)

)
where t0 = x0 = 0. It is the same as the distribution of (S1, . . . , Sk) where Xi ∼ N (0, ti−ti−1) independently
and Si = X1 + . . .+Xi.

Now, ∀i = 1, . . . , k, let gi(x1, . . . , xk) = (x1, . . . , xi−1, xi+1, . . . , xk). If µt1,...,tk is the distribution of
(Wt1 , . . . ,Wtk), then µt1,...,ti−1,ti+1,...,tk = µt1,...,tkg

−1. Hence, the probabilities defined on (Wt1 , . . . ,Wtk)
are consistent and then the Kolmogorov’s extension theorem shows the existence of probability distribution
for the stochastic process, the Brownian motion.

8.2 Lp-spaces

Let (Ω,F , µ) be a measure space. Specifically, suppose that Ω = [0, 1] OR R, F = B1, and µ: the Lebesgue
measure. Let Lp, for p > 0, be the set of real-valued functions such that

∫
|f |pdµ < ∞. For f ∈ Lp, let

‖f‖p = [
∫
|f |pdµ]

1
p .

Then,

1. ‖f‖p ≥ 0

2. If f, g ∈ Lp, then f + g ∈ Lp, and

‖f + g‖p ≤ ‖f‖p + ‖g‖p(: triangle inequality).

3. If f ∈ Lp, then ∀a ∈ R, af ∈ Lp, and ‖af‖p = |a|‖f‖p.

i.e., ‖ · ‖p behaves like a norm on Lp.

However,

4. ‖f‖p = 0 9 f = 0. i.e., f may be nonzero on any measure zero set.
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Hence, let Lp to be a set of equivalence classes in Lp where f ∼ g when f = g a.e. µ. Then, Lp is a normed
vector space with norm ‖f‖p for [f ] ∈ Lp, where [f ] is the set of all functions g such that g = f a.e. µ.

If p =∞, let

‖f‖∞ = sup{t ≥ 0 : µ({ω : |f(ω)| ≥ t})}
= inf{α ≥ 0 : µ({ω : |f(ω)| > α})}},

which is said to be an essential supremum of f . Note that it is different from supx |f(x)|.

Proposition 8.7

1) limp→∞ ‖f‖p = ‖f‖∞.

2) If µ(Ω) = 1 and p ≤ q, then ‖f‖p ≤ ‖f‖q.

Before proving the second proposition, I would introduce a useful inequality: the Hölder’s inequality.

Lemma 8.8 (Hölder’s inequality) If f ∈ Lp and g ∈ Lq where 1
p + 1

q = 1, then

1) fg ∈ L1, and

2) ‖f‖p‖q‖q ≥ ‖fg‖1.

In case of p = q = 2, we get the Cauchy-Schwartz inequality.

Proof of Proposition 2)∫
|f |pdµ =

∫
|f |p · 1dµ

≤
(∫
|f |p

q
p dµ

) p
q

(

∫
1

q
q−p dµ)1−

p
q by the Hölder’s inequality

where
q

p
and

q

q − p
are conjugate

=(‖f‖q)p[µ(Ω)]1−
p
q .

Hence, ‖f‖p ≤ ‖f‖q.

In sum, if µ(Ω) = 1 and 1 ≤ p < q, then ‖f‖1 ≤ ‖f‖p ≤ ‖f‖q ≤ ‖f‖∞.


