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1. Stochastic Process:
Let T be a index set. Vt € T', X;: a random variable on (Q, F, P) taking values in (X3, F;).
i.e., Xti weN— Xt(UJ)

2. Also, this can be represented as a set of random functions from 7" into X = Uz X;.

ie, w— f(w,t): a random function at ¢.

New Material:

8.1 Stochastic Process

8.1.1 Projections and Cylinder sets

How do we represent probability distributions on NyerX;? We first need the notion of measurability on the
space of functions from 7T into X.

Definition 8.1
1) ForteT, m : X = Ay, given by m(f) = f(t), is called a projection or an evaluation functional.

2) A one-dimensional cylinder set is a set of the form e By where By, € Fi, for onety € T, and
By = X, Vt # 1.

3) A k-dimensional cylinder set is a set of the form yer By where By, € Fy,, i = 1,...,k for some
{tl,...,tk} CT, and By = X;, Vt ¢ {tl,...7tk}.

Definition 8.2 The product o-field, crFy, is the smallest o-field on Q containing all one-dimensional
cylinder sets.

Note that, if T is finite, this definition is equivalent to the previous definition on product o-fields.
Lemma 8.3 The product o-field is the smallest o-field such that all ¢, t € T are measurable.
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rL Bt.
I :

Figure 8.1: two examples of realizations of a two-dimensional cylinder

Proof For a fixed t; € T and for each By, € Fy, wgl(Btl) = [yer By where By = Xy, Vt # 4. [ |

Theorem 8.4 Define X : Q — X by setting X (w) to be a function f such that
f(t) = Xi(w), Vi

Then, X is F /I, F;-measurable if and only if Xy is F/F;-measurable.

8.1.2 Kolmogorov’s extension theorem

Now, how do we specify probability on stochastic processes as a set of realizations? We cannot describe
the exact probability distribution for the realizations on every ¢t. However, with the Kolmogorov’s extension
theorem, we can handle with the probability of realizations on the finite number of t’s.

Definition 8.5 For v C T, let (X,,F,) be the product space and the product o-field restricted to v. Also,
suppose that P, is a measure on (X, F,). For u C v, the projection on P,, m,(P,), is defined to be

[0 (P)](B) := P,({z € X, : ¢, € B}) for B F,

, which is also said to be the marginal distribution of P, over X,,.

Theorem 8.6 (Kolmogorov’s extension theorem) Let X, = R, Vt € T. Then, X = RT. Assume that for
every finite subset v C T, P, is well-defined over (R?, BI*l) and that P, is consistent. (i.e., m,(P,) = P,.)
Then, 3P on (RT,BT) such that 7,(P) = P,, Yo C T.

Note again that, if 7" is finite, then it is equivalent to the case of product measures of random vectors.

8.1.3 Example: Brownian motion
Suppose that W, : t > 0 satisfies

1. Wy = 0 with probability 1.

2.0 <ty <ty <...<ty, Wy, — Wy, , are mutually independent.

i.e., Wy’s have independent increments.

3. V0 <s<t, W — Wy ~N(0,t).
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Some useful facts of W; are as follows:

1. E[W;] =0

EW?2 =t,Vt>0
Wt = Wt = Wt — W() NN(O,t).
3. Cov[Wg, W] = E[W,(W; — Wy)] —HE[WE]
E[(W, — WO)(Wt Wy)] + E[W?]

E[W2]since Wy — Wy L W, — W, with 0 < s <t
= s =min{s,t}.

To apply the Kolmogorov’s extension theorem, we need a distribution of (Wy,,..., W, ), 0 <t; < ... < tg.
Notice that (Wy,, Wy, — Wi, ..., Wy, — W —t;) has a joint multivariate Gaussian distribution with the mean
0 and the diagonal covariance matrix. Thus, (Wy,,..., Wy, ) has a pdf,

1 (x; = $¢1)2>
1y ) = M e exp  —
flz ) =1 27(t; —ti—1) P ( 2(t; — ti-1)

where tg = zg = 0. It is the same as the distribution of (S1, ..., Sk) where X; ~ N (0,%; —t;_1) independently
and S; = Xy +...+ X;,.

Now, Vi = 1,...,k, let gi(z1,...,2%) = (z1,...,Tiz1,Tit1,---,%k). If w4 is the distribution of
(th,...,Wtk) then Uty tn = Mtr,...t,9 . Hence, the probabilities defined on (Wy,, ..., Wy,)

ti—1,tig1,...
are consistent and then the Kolmogorov’s extension theorem shows the existence of probability distribution

for the stochastic process, the Brownian motion.

8.2 [P-spaces

Let (92, F, 1) be a measure space. Specifically, suppose that Q = [0,1] OR R, F = B!, and u: the Lebesgue
measure. Let Lp for p > 0, be the set of real-valued functions such that f |f|Pdp < oo. For f € LP, let

1fllp = LS | fPdp] 7
Then,

LAfll,=0

2. If f,g € LP, then f + g € LP, and
If +gllp < Ifllp + llgllp(: triangle inequality).

3. If f € L7, then Va € R, af € LP, and |laf|, = |a|||f]lp-

ie., || - ||, behaves like a norm on £LP.

However,

4. ||fll, =0-» f =0. ie., f may be nonzero on any measure zero set.
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Hence, let LP to be a set of equivalence classes in LP where f ~ g when f = g a.e. u. Then, LP is a normed
vector space with norm || f||, for [f] € LP, where [f] is the set of all functions g such that g = f a.e. p.

If p = o0, let

[flloc =sup{t = 0: u({w : [f(w)| = t})}
=inf{a>0: p({w: |f(w)| > a})}},

which is said to be an essential supremum of f. Note that it is different from sup,, | f(z)].

Proposition 8.7

1) lim, 0 ||fH;D = || flloo-
2) If (Q) =1 and p < q, then || fll, <[Ifllq-

Before proving the second proposition, I would introduce a useful inequality: the Holder’s inequality.
Lemma 8.8 (Hilder’s inequality) If f € LP and g € L7 where % + é =1, then

1) fge L', and
2) Ifllpllallq = 1 £gllx-

In case of p=q =2, we get the Cauchy-Schwartz inequality.

Proof of Proposition 2)

[1sdn= [ 117 100

< (/ |f|pzdﬂ) ' (/ 175dp) ™4 by the Hélder’s inequality
q

where = and are conjugate
p

=(If ) [w()])*

Hence, [|fll, < [[£ll4- "

_P
q.

In sum, if 4(Q2) =1 and 1 < p < g, then [|f[ly < [|f]lp < [[fllq < [Ifll-



