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Last time

Consider the usual triplet (Ω,F , µ), and, for p ≥ 1, define:

‖f‖p =

[∫
|f |pdµ

]1/p

The set Lp is the set of all equivalent classes of functions such that ‖f‖p < ∞, where two functions, f and
g, are in the same class if f = g a.e. [µ].

We can also define the “infinity” norm:

‖f‖∞ = inf {α ≥ 0 : µ({ω : |f(ω)| ≥ α}) = 0}

‖f‖∞ is generally called “the essential supremum” of a function and is not necessarily equal to supω∈Ω |f(ω)|.
We can think of ‖f‖∞ as the smallest number α such that f ≤ α a.e. [µ]

Proposition 9.1 If µ(Ω) <∞, then p ≤ q ↔ ‖f‖p ≤ C‖f‖q, where C is a constant that depends on µ(Ω),
p, and q. In particular, if µ(Ω) = 1, then C = 1.

Corollary 9.2 If µ(Ω) = 1, then the following chain of inequalities holds for p ≤ q:

‖f‖1 ≤ |f‖p ≤ |f‖q ≤ |f‖∞ (9.1)

and Lq ⊂ Lp.

If µ(Ω) =∞, then there is no set relationship among Lp spaces. In particular, example 4 from lecture notes
shows that if Ω = R+ and µ is the Lebesgue measure, then there exists a function f such that f /∈ L1, f ∈ L2

and f /∈ L3.

If µ is a counting measure on Ω, even if µ(Ω) =∞, some set relationships can be established. In particular,

we define the `p space to be the space of all sequences {xn}∞n=1 such that (
∑
n |xn|p)

1/p
is finite.

Proposition 9.3 Let 1 ≤ p ≤ q and let `p and `q be spaces defined as above. Then, we have ‖f‖∞ =
maxω∈Ω |f(ω)| and

‖f‖∞ ≤ ‖f‖q ≤ ‖f‖p ≤ ‖f‖1
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Proof:
If q = ∞, claim follows. If q < ∞, define f̃(ω) = f(ω)

‖f‖p . Then, we have that
∑
ω |f̃(ω)|p = 1 and 0 ≤

|f̃(ω)|p ≤ 1. In particular, we have |f̃(ω)|p ≥ |f̃(ω)|q since p ≤ q. Thus:

‖f‖q
‖f‖p

=

[∑
ω

|f̃(ω)|q
]1/q

≤

[∑
ω

|f̃(ω)|p
]1/q

= 1

Before proving Holder Inequality, we need the following lemma.

Lemma 9.4 If a, b > 0 and λ ∈ (0, 1), the following inequality holds:

aλb1−λ ≤ λa+ (1− λ)b

Proof: By Jensen’s inequality (below), we have

log(λa+ (1− λ)b) ≥ λ log a+ (1− λ) log b = log aλ + log b1−λ = log(aλb1−λ)

Exponentiating both sides yields the desire inequality.

Proposition 9.5 (Holder Inequality) Let p, q ≥ 1 such that 1/p+ 1/q = 1. Let X ∈ Lp ↔ [E|X|p]1/p <
∞ and Y ∈ Lq ↔ [E|Y |q]1/q <∞. Then, XY ∈ L1 and ‖XY ‖1 ≤ ‖X‖p‖X‖q.

Proof:
If p = 1, then q = ∞ and claim follows. Suppose p, q < ∞. Let U = |X|p and V = |Y |q. Notice that
U, V ∈ L1. By Lemma 9.4, we have that:[

U∫
U dµ

]1/p [
V∫
V dµ

]1/q

≤ 1

p

U∫
U dµ

+
1

q

V∫
V dµ

Then, we take the integral on both sides of the inequality:∫
U1/pV 1/q dµ∫
U dµ

∫
V dµ

≤ 1

p
+

1

q
= 1

Substituting X and Y in the expression leads to the claim.

Proposition 9.6 (Jensen’s Inequality) Let f be a convex function on I = (a, b), where −∞ ≤ a < b ≤ ∞
and let X be a random variable such that P (X ∈ I) = 1. Suppose further that EX exists. Then, Ef(X) ≥
f(EX).

Proof:
Let ` be the supporting hyperplane to f at a point z. Consider z = EX. By convexity, we have that
f(x) ≥ `(x) and f(z) = `(z). Because ` is a linear function and E is a linear operator, we have

E[f(X)] ≥ E[`(X)] = `(E[X]) = `(z) = f(z) = f(E[X])

In particular, equality holds when f is linear or X = EX a.e.

Proposition 9.7 (Minkovsky) If X,Y ∈ Lp then ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.
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Proposition 9.8 (Cr Inequality) E|X + Y |r ≤ Cr (|X|r + |Y |r) and Cr = 1 if r ∈ (0, 1] or Cr = 2r−1 is
r > 1.

Proposition 9.9 (Markov Inequality) Let X ≥ 0 a.e.. Then, for any c > 0, Pr(X ≥ c) ≤ EX
c .

Proof: Notice that X ≥ c · IX≥c. Therefore:

EX ≥ cPr(X ≥ c)

and the claim follows.

Proposition 9.10 (Chebyshev) The following inequality holds

Pr(|X − EX| ≥ c) ≤ Var(X)

c2

Proof: Notice that the event |X − EX| ≥ c is the same as (X − EX)2 ≥ c2. Then the claim follows by
Markov Inequality.

Conditional Probability & Conditional Expectation

Let us start with a triplet (Ω,F , P ). The intuition behind conditional probability is that we would like
to measure an event leveraging on some extra information. Extra information is usually thought as the
information contained in a sub-σ-field of F .

For example, let B1, . . . , Bn be a partition of Ω and A any a subset in F . Let C = σ(B1, . . . , Bn) ⊆ F and

f(ω) = Pr(ω∈A∩Bi)
Pr(ω∈Bi)

= P (A|Bi) if ω ∈ Bi. We notice that f is measurable with respect to C and is such that

P (A ∩Bi) = P (A|Bi)P (Bi) =

∫
Bi

f(ω)dP (ω)

In general, for any fixed set A, we can use the R-N derivative to define a measure on (Ω, C), given by B ∈ C,
defined as:

ν(B) = P (A ∩B) =

∫
B

f(ω)dP (ω)

A valid conditional probability measure is a function f(ω) = P (A|C)(ω) that satisfies the following properties:

1. Pr(A|C) is measurable wrt C

2. ∀B ∈ C, ν(B) = Pr(ω ∈ A ∩B) =
∫
B

Pr(A|C)(ω)dP (ω)

3. Pr(A|C) is unique a.e. [P ]

We can define conditional expectation in a similar way. Let X be a random variable such that E|X| < ∞
and C ⊆ F . Then, we define the conditional expectation of X given C, denoted E[X|C] as any function
h : Ω→ R that is C/B1 measurable and such that∫

B

h(ω)dP (ω) =

∫
B

X(ω)dP (ω) ∀B ∈ C
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Any other function f : Ω→ R satisfying these conditions is called a version of E[X|C].

For example, let C = {∅,Ω}, notice that EX(ω) : Ω → R is C/B1 measurable.1 Moreover,
∫

Ω
EXdP (ω) =

EX =
∫

Ω
XdP (ω) and

∫
∅EXdµ = 0 =

∫
∅XdP (ω). Hence, we conclude that a version of E[X|C] when C is

the trivial σ-field is E[X].

Let (X,Y ) a vector of random variables with density fX,Y with respect to some σ-finite dominating measure
on R2. Let fY (y) =

∫
R fX,Y (x, y)dx, then, assuming fY (y) 6= 0, we define fX|Y (x) = fX,Y (x, y)/fY (y).

Proposition 9.11 Let C = σ(Y ), then a version of E[X|C] is given by g(y) =
∫
R xfX|Y (x, y)dx.

Proof: Let C = σ(Y ), then g(Y ) is C-measurable. Therefore, we only need to show that
∫
B
g(Y )dP (ω) =∫

B
XdP (ω) for all B ∈ C.

Let B ∈ C, then there exist A ∈ R such that B = Y −1(A). Hence, we have IB(ω) = IA(Y (ω)) and∫
B

g(Y (ω))dP (ω) =

∫
R
IA(y)g(y)dµ(y)

=

∫
R
IA(y)g(y)fY (y)dy [R-N derivative]

=

∫
R
IA(y)

∫
R
xfX|Y (x, y)dxfY (y)dy

=

∫
R

∫
R
xIA(y)fX,Y (x, y)dxdy

= EX,Y [X · IA(Y )]

= E[X · IB(X)] =

∫
B

XdP (ω)

1E(X) is a constant, and we have that the σ-field generated by Z is the trivial σ-field if and only if Z is a constant function.


