10-752: Advanced Probability Spring 2018

Lecture 9: February 27

Lecturer: Alessandro Rinaldo Scribe: Matteo Bonvini

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Last time

Consider the usual triplet $(\Omega, \mathcal{F}, \mu)$, and, for $p \geq 1$, define:

$$
||f||_p = \left[\int |f|^p d\mu\right]^{1/p}
$$

The set L_p is the set of all equivalent classes of functions such that $||f||_p < \infty$, where two functions, f and g, are in the same class if $f = g \ a.e. \ [\mu].$

We can also define the "infinity" norm:

$$
||f||_{\infty} = \inf \{ \alpha \ge 0 : \mu(\{\omega : |f(\omega)| \ge \alpha\}) = 0 \}
$$

 $||f||_{\infty}$ is generally called "the essential supremum" of a function and is not necessarily equal to sup_{ω∈Ω} $|f(\omega)|$. We can think of $||f||_{\infty}$ as the smallest number α such that $f \leq \alpha$ a.e. [µ]

Proposition 9.1 If $\mu(\Omega) < \infty$, then $p \leq q \leftrightarrow ||f||_p \leq C||f||_q$, where C is a constant that depends on $\mu(\Omega)$, p, and q. In particular, if $\mu(\Omega) = 1$, then $C = 1$.

Corollary 9.2 If $\mu(\Omega) = 1$, then the following chain of inequalities holds for $p \leq q$.

$$
||f||_1 \le |f||_p \le |f||_q \le |f||_{\infty} \tag{9.1}
$$

and $L_q \subset L_p$.

If $\mu(\Omega) = \infty$, then there is no set relationship among L_p spaces. In particular, example 4 from lecture notes shows that if $\Omega = \mathbb{R}^+$ and μ is the Lebesgue measure, then there exists a function f such that $f \notin L_1, f \in L_2$ and $f \notin L_3$.

If μ is a counting measure on Ω , even if $\mu(\Omega) = \infty$, some set relationships can be established. In particular, we define the ℓ_p space to be the space of all sequences $\{x_n\}_{n=1}^{\infty}$ such that $\left(\sum_n |x_n|^p\right)^{1/p}$ is finite.

Proposition 9.3 Let $1 \leq p \leq q$ and let ℓ_p and ℓ_q be spaces defined as above. Then, we have $||f||_{\infty} =$ $\max_{\omega \in \Omega} |f(\omega)|$ and

$$
||f||_{\infty} \leq ||f||_q \leq ||f||_p \leq ||f||_1
$$

П

Proof:

If $q = \infty$, claim follows. If $q < \infty$, define $\tilde{f}(\omega) = \frac{f(\omega)}{\|f\|_p}$. Then, we have that $\sum_{\omega} |\tilde{f}(\omega)|^p = 1$ and $0 \leq$ $|\tilde{f}(\omega)|^p \leq 1$. In particular, we have $|\tilde{f}(\omega)|^p \geq |\tilde{f}(\omega)|^q$ since $p \leq q$. Thus:

$$
\frac{\|f\|_q}{\|f\|_p} = \left[\sum_{\omega} |\tilde{f}(\omega)|^q\right]^{1/q} \le \left[\sum_{\omega} |\tilde{f}(\omega)|^p\right]^{1/q} = 1
$$

Before proving Holder Inequality, we need the following lemma.

Lemma 9.4 If $a, b > 0$ and $\lambda \in (0, 1)$, the following inequality holds:

$$
a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b
$$

Proof: By Jensen's inequality (below), we have

$$
\log(\lambda a + (1 - \lambda)b) \ge \lambda \log a + (1 - \lambda) \log b = \log a^{\lambda} + \log b^{1 - \lambda} = \log(a^{\lambda} b^{1 - \lambda})
$$

Exponentiating both sides yields the desire inequality.

Proposition 9.5 (Holder Inequality) Let $p, q \ge 1$ such that $1/p + 1/q = 1$. Let $X \in L_p \leftrightarrow [E|X|^p]^{1/p} <$ ∞ and $Y \in L_q \leftrightarrow [E|Y|^q]^{1/q} < \infty$. Then, $XY \in L_1$ and $||XY||_1 \leq ||X||_p ||X||_q$.

Proof:

If $p = 1$, then $q = \infty$ and claim follows. Suppose $p, q < \infty$. Let $U = |X|^p$ and $V = |Y|^q$. Notice that $U, V \in L_1$. By Lemma 9.4, we have that:

$$
\left[\frac{U}{\int U \ d\mu}\right]^{1/p} \left[\frac{V}{\int V \ d\mu}\right]^{1/q} \le \frac{1}{p} \frac{U}{\int U \ d\mu} + \frac{1}{q} \frac{V}{\int V \ d\mu}
$$

Then, we take the integral on both sides of the inequality:

$$
\frac{\int U^{1/p} V^{1/q} d\mu}{\int U d\mu \int V d\mu} \le \frac{1}{p} + \frac{1}{q} = 1
$$

Substituting X and Y in the expression leads to the claim.

Proposition 9.6 (Jensen's Inequality) Let f be a convex function on $I = (a, b)$, where $-\infty \le a < b \le \infty$ and let X be a random variable such that $P(X \in I) = 1$. Suppose further that EX exists. Then, $Ef(X) \geq$ $f(EX).$

Proof:

Let ℓ be the supporting hyperplane to f at a point z. Consider $z = EX$. By convexity, we have that $f(x) \geq \ell(x)$ and $f(z) = \ell(z)$. Because ℓ is a linear function and E is a linear operator, we have

$$
E[f(X)] \ge E[\ell(X)] = \ell(E[X]) = \ell(z) = f(z) = f(E[X])
$$

In particular, equality holds when f is linear or $X = EX$ a.e.

Proposition 9.7 (Minkovsky) If $X, Y \in L_p$ then $||X + Y||_p \le ||X||_p + ||Y||_p$.

Proposition 9.8 $(C_r$ Inequality) $E|X + Y|^r \leq C_r(|X|^r + |Y|^r)$ and $C_r = 1$ if $r \in (0,1]$ or $C_r = 2^{r-1}$ is $r > 1$.

Proposition 9.9 (Markov Inequality) Let $X \ge 0$ a.e.. Then, for any $c > 0$, $Pr(X \ge c) \le \frac{EX}{c}$.

Proof: Notice that $X \geq c \cdot I_{X>c}$. Therefore:

$$
EX \ge c \Pr(X \ge c)
$$

and the claim follows.

Proposition 9.10 (Chebyshev) The following inequality holds

$$
Pr(|X - EX| \ge c) \le \frac{Var(X)}{c^2}
$$

Proof: Notice that the event $|X - EX| \ge c$ is the same as $(X - EX)^2 \ge c^2$. Then the claim follows by Markov Inequality.

Conditional Probability & Conditional Expectation

Let us start with a triplet (Ω, \mathcal{F}, P) . The intuition behind conditional probability is that we would like to measure an event leveraging on some extra information. Extra information is usually thought as the information contained in a sub- σ -field of \mathcal{F} .

For example, let B_1, \ldots, B_n be a partition of Ω and A any a subset in F. Let $\mathcal{C} = \sigma(B_1, \ldots, B_n) \subseteq \mathcal{F}$ and $f(\omega) = \frac{\Pr(\omega \in A \cap B_i)}{\Pr(\omega \in B_i)} = P(A|B_i)$ if $\omega \in B_i$. We notice that f is measurable with respect to C and is such that

$$
P(A \cap B_i) = P(A|B_i)P(B_i) = \int_{B_i} f(\omega)dP(\omega)
$$

In general, for any fixed set A, we can use the R-N derivative to define a measure on (Ω, \mathcal{C}) , given by $B \in \mathcal{C}$, defined as:

$$
\nu(B)=P(A\cap B)=\int_B f(\omega)dP(\omega)
$$

A valid conditional probability measure is a function $f(\omega) = P(A|C)(\omega)$ that satisfies the following properties:

- 1. Pr $(A|C)$ is measurable wrt C
- 2. $\forall B \in \mathcal{C}, \nu(B) = \Pr(\omega \in A \cap B) = \int_B \Pr(A|C)(\omega) dP(\omega)$
- 3. $Pr(A|C)$ is unique a.e. [P]

We can define conditional expectation in a similar way. Let X be a random variable such that $E|X| < \infty$ and $\mathcal{C} \subseteq \mathcal{F}$. Then, we define the conditional expectation of X given C, denoted $E[X|\mathcal{C}]$ as any function $h: \Omega \to \mathbb{R}$ that is $\mathcal{C}/\mathcal{B}_1$ measurable and such that

$$
\int_B h(\omega)dP(\omega) = \int_B X(\omega)dP(\omega) \,\forall B \in \mathcal{C}
$$

Г

Any other function $f : \Omega \to \mathbb{R}$ satisfying these conditions is called a version of $E[X|\mathcal{C}]$.

For example, let $\mathcal{C} = \{\emptyset, \Omega\}$, notice that $EX(\omega): \Omega \to \mathcal{R}$ is $\mathcal{C}/\mathcal{B}_1$ measurable.¹ Moreover, $\int_{\Omega} EXdP(\omega) =$ $EX = \int_{\Omega} XdP(\omega)$ and $\int_{\emptyset} EXd\mu = 0 = \int_{\emptyset} XdP(\omega)$. Hence, we conclude that a version of $E[X|\mathcal{C}]$ when \mathcal{C} is the trivial σ -field is $E[X]$.

Let (X, Y) a vector of random variables with density $f_{X,Y}$ with respect to some σ -finite dominating measure on \mathbb{R}^2 . Let $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x, y) dx$, then, assuming $f_Y(y) \neq 0$, we define $f_{X|Y}(x) = f_{X,Y}(x, y)/f_Y(y)$.

Proposition 9.11 Let $C = \sigma(Y)$, then a version of $E[X|C]$ is given by $g(y) = \int_{\mathbb{R}} x f_{X|Y}(x, y) dx$.

Proof: Let $\mathcal{C} = \sigma(Y)$, then $g(Y)$ is C-measurable. Therefore, we only need to show that $\int_B g(Y) dP(\omega) =$ $\int_B X dP(\omega)$ for all $B \in \mathcal{C}$.

Let $B \in \mathcal{C}$, then there exist $A \in \mathbb{R}$ such that $B = Y^{-1}(A)$. Hence, we have $I_B(\omega) = I_A(Y(\omega))$ and

 \overline{v}

$$
\int_{B} g(Y(\omega))dP(\omega) = \int_{\mathbb{R}} I_{A}(y)g(y)d\mu(y)
$$
\n
$$
= \int_{\mathbb{R}} I_{A}(y)g(y)f_{Y}(y)dy \quad \text{[R-N derivative]}
$$
\n
$$
= \int_{\mathbb{R}} I_{A}(y) \int_{\mathbb{R}} x f_{X|Y}(x,y) dx f_{Y}(y) dy
$$
\n
$$
= \int_{\mathbb{R}} \int_{\mathbb{R}} x I_{A}(y) f_{X,Y}(x,y) dx dy
$$
\n
$$
= E_{X,Y}[X \cdot I_{A}(Y)]
$$
\n
$$
= E[X \cdot I_{B}(X)] = \int_{B} X dP(\omega)
$$

 ${}^{1}E(X)$ is a constant, and we have that the σ -field generated by Z is the trivial σ -field if and only if Z is a constant function.