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4.1 Measurable Functions

Recall the definition of a measurable function from last lecture.

Definition 4.1 Let (Ω,F) and (S,A) be measurable spaces. A function f : Ω → S is measurable when
∀A ∈ A,

f−1(A) = {ω ∈ Ω : f(ω) ∈ A} ∈ F

Remark 4.2 If f is measurable, this does not imply f(B) ∈ A,∀B ∈ F .

Example: Consider A = {∅, S}, where {s ∈ S : ∃ω ∈ B, f(ω) = s} and f(ω) = a, ∀ω ∈ Ω. Then B ∈ F ,
and B 6= Ω, and f(B) /∈ A. On the homework, you will prove f−1(A) = {f−1(A) : A ∈ A} is a σ-field on Ω,
using properties of images.

Just like a σ-field can be generated by a set, it can also be generated by a measurable function.

Definition 4.3 The σ-field f−1(A) is called the σ-field generated by f . It is the smallest σ-field on Ω
such that f is measurable.

Here is a useful result, which - as we will see later - begets a number of useful consequences for the measur-
ability of continuous, monotone, and multivariate functions.

Lemma 4.4 Let (Ω,F) and (S,A) be measurable spaces, and let f : Ω → S and let C be a collection of
subsets of A generating A, i.e. σ(C) = A. Then f is measurable if and only if f−1(C) ⊆ F .

In other words, if the pre-image of every set is measurable, then f is measurable. Note, it should be enough
to check the condition on the σ-field of the pre-image. Here we prove the only if direction because it is more
straightforward.

Proof: Let A′ = {A ⊆ S : f−1(A) ∈ F}. Then you can show A′ is a σ-field over S and contains C.
A = σ(C) ⊆ A′, the smallest σ-field containing C. The result follows because if f is F/A′-measurable, it is
also F/A-measurable for A ⊆ A′. (A σ-field larger than the trivial σ-field.)
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4.1.1 Consequences of Lemma 4.5

There are a number of consequences of the previous lemma, where we saw that f : Ω → S is measurable if
and only if f−1(C) ⊆ F , where σ(C) = A.

1. Continuous functions* are measurable.
*when they are endowed with Borel σ-fields.

In particular, if X and Y are topological spaces (open and closed sets are well defined) then f : X → Y
is continuous if f−1(U) is an open set in X whenever U is an open set in Y .

2. Monotone functions are measurable.

Let f : Ω → R, where Ω has σ-field F and R has Borel σ-field B = σ({(−∞, b), b ∈ R}), then f
is measurable if f−1((−∞, b)) is measurable for all b ∈ R.

Dealing with R is trickier. Note, if f : Ω → R where R is R ∪ {∞} ∪ {−∞} then f−1({∞}) =
∩n{ω : f(ω) > n}.

3. Multivariate functions can be measurable.

Let f be a multivariate function, f : Ω→ Rk where Rk has the σ-field Bk = σ({(a, b]× · · · × (an, bn]})
and ai < bi for all i, then f is measurable if f−1((a, b] × · · · × (an, bn]) ∈ F for all ai < bi. Where
f−1((a, b]× · · · × (an, bn]) is

{ω ∈ Ω, fi(ω) ∈ (ai, bi],∀ i}

and notice this is equivalent to

k⋂
i=1

{ω : fi(ω) ∈ (ai, bi]} =

k⋂
i=1

f−1
i ((ai, bi])

which shows that f is measurable if and only if each fi is measurable.

To wrap up our study of measurable functions, here are some non-trivial examples and proofs of measurability.

Theorem 4.5 Let fn : Ω→ R be measurable for all n. Then

(i) If ω → lim sup
n

fn(ω) then lim sup
n

fn and lim inf
n

fn are measurable.

(ii) {ω : limn→∞ fn(ω) exists} is a measurable set.

(iii) Let f = limn fn. If fn(ω) = f for all ω, then f is measurable.

Proof: Part (i). We know lim sup
n

fn(ω) = lim sup
k≥n

fk(ω), but for any b ∈ R:

{ω : sup
k≥n

fk(ω) ≤ b} =
⋂
k≥n

{ω : fk(ω) ≤ b}

and a countable intersection of measurable sets is measurable.

Proof: Part (ii). Homework!
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Proof: Part (iii). Consider {ω : f(ω) > b}, and b ∈ R is arbitrary. All we know is fn are measurable, so we
must express in terms of that, which is equivalent to:

{ω : lim
n→∞

fn(ω) > b} =

∞⋃
r=1

lim inf
n

{
ω : fn(ω) > b+

1

r

}

=

∞⋃
r=1

{
ω : fn(ω) > b+

1

r
eventually

}

=

∞⋃
r=1

∞⋃
n=1

∞⋃
k=n

{
ω : fk(ω) > b+

1

r

}
and since {ω : fk(ω) > b+ 1

r} is measurable and we are taking a finite number of countable set operations,
that must be measurable and so f must be measurable.

4.2 Random Variables and Induced Measure

Definition 4.6 Let X : Ω → R and let (Ω,F , P ) be a probability space (a measure that happens to be a
probability). Then X is a random variable.

Example: Let Ω = [0, 1], F , B is restricted to [0, 1], and P is a Lebesgue measure on [0, 1]. X(ω) = b2ωc
and Z(ω) = ω, then X takes values in [0, 1], so X(ω) = I[0, 12 )(ω). Almost everywhere, µ(X−1({0})) =

µ(X−1({−1})) = 1
2 and this is a Bernoulli random variable.

Recognize that µ(Z−1([0, c))) = c for c ∈ [0, 1] is a Uniform random variable.

Lemma 4.7 Let (Ω,F , µ) and (S,A) be measure spaces and f : Ω → S be measurable, then f induces a
measure ν on (S,A), which is given by ν(A) = µ(f−1(A)) for all A ∈ A.

Definition 4.8 Let (Ω,F , P ) be a probability space and X be a random variable. The measure on (R,B)
induced by P and X is the probability distribution of X.

Notice that Pr(X ∈ A), A ∈ B, a sufficiently well-balanced set, ∃ (Ω,F , P ) and X is measurable. Pr(X ∈
A) = P ({ω ∈ Ω : X(ω) ∈ A}) = P (X−1(A)) = µX(A), the probability distribution of X.

4.2.1 Measures Acting on Functions

This section is covered in section 3 of lecture notes 2. Our goal is to examine integrals∫
Ω

fdµ

or rather, how measures act on functions.

Example: Some examples are already familiar.

• If µ is the Lebesgue measure, then dµ = dx.

• If µ is a PDF and f is the identity function, then
∫

Ω
fdµ is the expectation.
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Definition 4.9 A simple function is a function taking finitely many values. Let (Ω,F) be a measurable
space, and let f be a simple function taking values {a1 · · · an} (distinct reals). The canonical form of f is:

f(ω) =

n∑
i=1

aiIAi
(ω)

where IAi(ω) is 1 when ω ∈ A and 0 when ω /∈ A, and also Ai = f−1(ai) = {ω : f(ω) = ai} and A1 · · ·An is
a measurable partition of Ω.

Theorem 4.10 Let f be a non-negative measurable function, then there exists {fn}n sequence of non-
negative simple functions such that fn(ω) ∈ f(ω) for all ω ∈ Ω (point-wise convergence).

Example: Consider

fn(ω) =

{
k−1
2n

k−1
2n ≤ f(ω) < k

2n

n f(ω) ≥ n

where n = 1 · · ·n2n. Notice that in the first condition, it approaches f(ω) as n→∞. Now

f =

n2n∑
k=1

k − 1

2n
IAk

(ω) + nIA∞,n
(ω)

and so, if f is real-valued then
f(ω) = f+(ω)− f−(ω)

where f+ ≥ 0 and f− ≥ 0, and f+(ω) = max{f(ω), 0} and f−(ω) = −min({f(ω), 0}.


