36-752: Advanced Probability Spring 2018

Lecture 4: February 8

Lecturer: Alessandro Rinaldo Scribe: Theresa Gebert

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the instructor.

4.1 Measurable Functions

Recall the definition of a measurable function from last lecture.

Definition 4.1 Let (Ω, \mathcal{F}) and (S, \mathcal{A}) be measurable spaces. A function $f : \Omega \to S$ is **measurable** when $\forall A \in \mathcal{A},$

$$
f^{-1}(A) = \{ \omega \in \Omega : f(\omega) \in A \} \in \mathcal{F}
$$

Remark 4.2 If f is measurable, this does not imply $f(B) \in \mathcal{A}, \forall B \in \mathcal{F}$.

Example: Consider $\mathcal{A} = \{\emptyset, S\}$, where $\{s \in S : \exists \omega \in B, f(\omega) = s\}$ and $f(\omega) = a, \forall \omega \in \Omega$. Then $B \in \mathcal{F}$, and $B \neq \Omega$, and $f(B) \notin A$. On the homework, you will prove $f^{-1}(A) = \{f^{-1}(A) : A \in A\}$ is a σ -field on Ω , using properties of images.

Just like a σ -field can be generated by a set, it can also be generated by a measurable function.

Definition 4.3 The σ -field $f^{-1}(A)$ is called the σ -field generated by f. It is the smallest σ -field on Ω such that f is measurable.

Here is a useful result, which - as we will see later - begets a number of useful consequences for the measurability of continuous, monotone, and multivariate functions.

Lemma 4.4 Let (Ω, \mathcal{F}) and (S, \mathcal{A}) be measurable spaces, and let $f : \Omega \to S$ and let C be a collection of subsets of A generating A, i.e. $\sigma(C) = A$. Then f is measurable if and only if $f^{-1}(C) \subseteq \mathcal{F}$.

In other words, if the pre-image of every set is measurable, then f is measurable. Note, it should be enough to check the condition on the σ -field of the pre-image. Here we prove the *only if* direction because it is more straightforward.

Proof: Let $\mathcal{A}' = \{A \subseteq S : f^{-1}(A) \in \mathcal{F}\}\$. Then you can show \mathcal{A}' is a σ -field over S and contains C. $\mathcal{A} = \sigma(C) \subseteq \mathcal{A}'$, the smallest σ -field containing C. The result follows because if f is \mathcal{F}/\mathcal{A}' -measurable, it is also \mathcal{F}/\mathcal{A} -measurable for $\mathcal{A} \subseteq \mathcal{A}'$. (A σ -field larger than the trivial σ -field.)

4.1.1 Consequences of Lemma 4.5

There are a number of consequences of the previous lemma, where we saw that $f : \Omega \to S$ is measurable if and only if $f^{-1}(C) \subseteq \mathcal{F}$, where $\sigma(C) = \mathcal{A}$.

1. Continuous functions* are measurable. *when they are endowed with Borel σ -fields.

In particular, if X and Y are topological spaces (open and closed sets are well defined) then $f: X \to Y$ is continuous if $f^{-1}(U)$ is an open set in X whenever U is an open set in Y.

2. Monotone functions are measurable.

Let $f : \Omega \to \mathbb{R}$, where Ω has σ -field $\mathcal F$ and $\mathbb R$ has Borel σ -field $\mathcal B = \sigma(\{(-\infty, b), b \in \mathbb{R}\})$, then f is measurable if $f^{-1}((-\infty, b))$ is measurable for all $b \in \mathbb{R}$.

Dealing with $\overline{\mathbb{R}}$ is trickier. Note, if $f : \Omega \to \overline{\mathbb{R}}$ where $\overline{\mathbb{R}}$ is $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ then $f^{-1}(\{\infty\}) =$ $\cap_n\{\omega : f(\omega) > n\}.$

3. Multivariate functions can be measurable.

Let f be a multivariate function, $f: \Omega \to \mathbb{R}^k$ where \mathbb{R}^k has the σ -field $\mathcal{B}^k = \sigma(\{(a, b] \times \cdots \times (a_n, b_n]\})$ and $a_i < b_i$ for all i, then f is measurable if $f^{-1}((a, b] \times \cdots \times (a_n, b_n]) \in \mathcal{F}$ for all $a_i < b_i$. Where $f^{-1}((a, b] \times \cdots \times (a_n, b_n])$ is

$$
\{\omega \in \Omega, f_i(\omega) \in (a_i, b_i], \forall i\}
$$

and notice this is equivalent to

$$
\bigcap_{i=1}^{k} \{ \omega : f_i(\omega) \in (a_i, b_i] \} = \bigcap_{i=1}^{k} f_i^{-1}((a_i, b_i])
$$

which shows that f is measurable if and only if each f_i is measurable.

To wrap up our study of measurable functions, here are some non-trivial examples and proofs of measurability.

Theorem 4.5 Let $f_n : \Omega \to \mathbb{R}$ be measurable for all n. Then

- (i) If $\omega \to \limsup_n f_n(\omega)$ then $\limsup_n f_n$ and $\liminf_n f_n$ are measurable.
- (ii) $\{\omega : \lim_{n\to\infty} f_n(\omega) \text{ exists} \}$ is a measurable set.
- (iii) Let $f = \lim_{n} f_n$. If $f_n(\omega) = f$ for all ω , then f is measurable.

Proof: Part (*i*). We know $\limsup_{n} f_n(\omega) = \limsup_{k \ge n} f_k(\omega)$, but for any $b \in \mathbb{R}$:

$$
\{\omega : \sup_{k \ge n} f_k(\omega) \le b\} = \bigcap_{k \ge n} \{\omega : f_k(\omega) \le b\}
$$

and a countable intersection of measurable sets is measurable.

Proof: Part (ii). Homework!

Proof: Part (iii). Consider $\{\omega: f(\omega) > b\}$, and $b \in \mathbb{R}$ is arbitrary. All we know is f_n are measurable, so we must express in terms of that, which is equivalent to:

$$
\{\omega : \lim_{n \to \infty} f_n(\omega) > b\} = \bigcup_{r=1}^{\infty} \liminf_{n} \left\{\omega : f_n(\omega) > b + \frac{1}{r}\right\}
$$

$$
= \bigcup_{r=1}^{\infty} \left\{\omega : f_n(\omega) > b + \frac{1}{r} \text{ eventually}\right\}
$$

$$
= \bigcup_{r=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left\{\omega : f_k(\omega) > b + \frac{1}{r}\right\}
$$

and since $\{\omega: f_k(\omega) > b + \frac{1}{r}\}\$ is measurable and we are taking a finite number of countable set operations, that must be measurable and so f must be measurable. П

4.2 Random Variables and Induced Measure

Definition 4.6 Let $X : \Omega \to \overline{\mathbb{R}}$ and let (Ω, \mathcal{F}, P) be a probability space (a measure that happens to be a probability). Then X is a random variable.

Example: Let $\Omega = [0, 1], \mathcal{F}, \mathcal{B}$ is restricted to [0,1], and P is a Lebesgue measure on [0,1]. $X(\omega) = |2\omega|$ and $Z(\omega) = \omega$, then X takes values in [0,1], so $X(\omega) = \mathbb{I}_{[0, \frac{1}{2})}(\omega)$. Almost everywhere, $\mu(X^{-1}(\{0\})) =$ $\mu(X^{-1}(\{-1\})) = \frac{1}{2}$ and this is a Bernoulli random variable.

Recognize that $\mu(Z^{-1}([0, c))) = c$ for $c \in [0, 1]$ is a Uniform random variable.

Lemma 4.7 Let $(\Omega, \mathcal{F}, \mu)$ and (S, \mathcal{A}) be measure spaces and $f : \Omega \to S$ be measurable, then f induces a **measure** ν on (S, \mathcal{A}) , which is given by $\nu(\mathcal{A}) = \mu(f^{-1}(A))$ for all $A \in \mathcal{A}$.

Definition 4.8 Let (Ω, \mathcal{F}, P) be a probability space and X be a random variable. The measure on $(\mathbb{R}, \mathcal{B})$ induced by P and X is the probability distribution of X .

Notice that $Pr(X \in A), A \in \mathcal{B}$, a sufficiently well-balanced set, $\exists (\Omega, \mathcal{F}, P)$ and X is measurable. $Pr(X \in A)$ $A) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X^{-1}(A)) = \mu_X(A)$, the probability distribution of X.

4.2.1 Measures Acting on Functions

This section is covered in section 3 of lecture notes 2. Our goal is to examine integrals

$$
\int_\Omega f d\mu
$$

or rather, how measures act on functions.

Example: Some examples are already familiar.

- If μ is the Lebesgue measure, then $d\mu = dx$.
- If μ is a PDF and f is the identity function, then $\int_{\Omega} f d\mu$ is the expectation.

Definition 4.9 A simple function is a function taking finitely many values. Let (Ω, \mathcal{F}) be a measurable space, and let f be a simple function taking values $\{a_1 \cdots a_n\}$ (distinct reals). The canonical form of f is:

$$
f(\omega) = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i}(\omega)
$$

where $\mathbb{I}_{A_i}(\omega)$ is 1 when $\omega \in A$ and 0 when $\omega \notin A$, and also $A_i = f^{-1}(a_i) = {\omega : f(\omega) = a_i}$ and $A_1 \cdots A_n$ is a measurable partition of Ω .

Theorem 4.10 Let f be a non-negative measurable function, then there exists $\{f_n\}_n$ sequence of nonnegative simple functions such that $f_n(\omega) \in f(\omega)$ for all $\omega \in \Omega$ (point-wise convergence).

Example: Consider

$$
f_n(\omega) = \begin{cases} \frac{k-1}{2^n} & \frac{k-1}{2^n} \le f(\omega) < \frac{k}{2^n} \\ n & f(\omega) \ge n \end{cases}
$$

where $n = 1 \cdots n2^n$. Notice that in the first condition, it approaches $f(\omega)$ as $n \to \infty$. Now

$$
f = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbb{I}_{A_k}(\omega) + n \mathbb{I}_{A_{\infty,n}}(\omega)
$$

and so, if f is real-valued then

$$
f(\omega) = f^+(\omega) - f^-(\omega)
$$

where $f^+ \ge 0$ and $f^- \ge 0$, and $f^+(\omega) = \max\{f(\omega), 0\}$ and $f^-(\omega) = -\min\{f(\omega), 0\}.$