
36-752 Advanced Probability Overview Spring 2018

Lecture 10: March 1
Lecturer: Alessandro Rinaldo Scribes: Wanshan Li

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Conditional Expectation

Given a probability space (Ω,F , P ), let C ⊆ F be a sub-σ-field of F , and a fixed set A ∈ F . Our goal is
to define the conditional probability P (A|C). The point is that, C provides us additional information, so
P (A|C) would be different from P (A).

First we consider of a special case C = σ(B1, · · · , Bn) where {B1, · · · , Bn} is a partition of Ω. The additional
information here is that, for any ω ∈ Ω, one knows whether ω ∈ Bk or not.

Define f : Ω→ R by

f(ω) =

{
P (A∩Bk)
P (Bk) , if ω ∈ Bk and P (Bk) > 0

ck, if ω ∈ Bk and P (Bk) = 0,
(10.1)

where ck ∈ R can be any constant. Now we define the conditional probability, as a real-valued function on
Ω, by Pr(A|C)(ω) = f(ω). The following fact shows that our definition is reasonable in a way:

P (A ∩Bk) = P (A|Bk)P (Bk) =

∫
Bk

Pr(A|C)(ω)dP (ω).

Now let C be a generic sub-σ-field of F . We can create a measure ν on (Ω, C), given by

ν(B) = P (A ∩B).

If we can find some C-measurable function f , such that (Notice that P is originally defined on (Ω,F), but
here we can treat it as a probability measure on (Ω, C) as C ⊆ F)

ν(B) = P (A ∩B) =

∫
B

f(ω)dP (ω),

then we define function f to be the conditional probability of A given C, and denote it as f = Pr(A|C). Thus
by our definition

1) Pr(A|C)(·) is C-measurable.

2) ∀B ∈ C, ν(B) = P (A ∩B) =
∫
B

Pr(A|C)(ω)dP (ω).

Remark There exists many versions of Pr(A|C)(·), but by property 2), these versions are equal to each
other a.s.[P ].
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Let X(ω) = 1A(ω), then we may want to write

Pr(A|C) = E(X|C).

By generalizing X from an indicator function to any random variable we can get the definition of the
conditional expectation.

Definition 10.1. Given a probability space (Ω,F , P ), let C ⊆ F be a sub-σ-field of F , and X an F/B-
measurable random variable with E|X| < ∞. The conditional expectation of X given C is any real valued
function h : Ω→ R, such that

1) h is C-measurable.

2)
∫
B
h(ω)dP (ω) =

∫
B
X(ω)dP (ω), ∀B ∈ C.

h is denoted as E[X|C].

Remark

• f = E[X|C] means f is a version of E[X|C].

• By 2) in the definition, if h1 and h2 are two versions of E[X|C], then h1(ω) = h2(ω), a.s.[P ]. Conversely,
if h1 is a version of E[X|C] and h1(ω) = h2(ω), a.s.[P ], then h2 is also a version of E[X|C].

• If C = {∅,Ω}, then E[X|C] = E[X].

• If X itself is C/B measurable, then X = E[X|C].

• If X = a, a.s., then E[X|C] = a, a.s.

10.1.1 Two perspectives

RN derivative One may ask ”Does this function exist?”. The answer is ”Yes”, and one can demonstrate
this by using RN derivative. Assume X ≥ 0, a.s., the sketched proof is: define ν(B) =

∫
B
X(ω)dP (ω), then

ν is a measure on (Ω, C). By the RN theorem, ∃h, which is C-measurable and ∀B ∈ C,

ν(B) =

∫
B

h(ω)dP (ω).

Then by definition, the RN derivative h is the conditional expectation E[X|C].

Projection An alternative perspective is to think of E[X|C] as a ”projection”. Given a r.v. X on (Ω,F , P )
s.t. EX2 < ∞ and C ⊆ F . Consider L2(Ω, C, P ), a Hilbert space of r.v.’s that are C-measurable and L2.
Then one can show that, the C-measurable random variable Z is the conditional expectation of X if and
only if Z is the orthogonal projection of X onto L2(Ω, C, P ), that is

E[W (X − Z)] = 0, ∀W ∈ L2(Ω, C, P ),

or equivalently,
Z = argmin

W∈L2(Ω,C,P )

E(X −W )2.
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Now from this perspective, if we let C = σ(Y ) where Y is an r.v. on (Ω,F , P ), then by theorem 39 in notes,

E[X|Y ] , E[X|C] = argmin
meas. function g, s.t. E[g(Y )]2<∞

E(X − g(Y ))2.

Recall that the usual machinery of defining E[X|Y ] is

E[X|Y ] = g(Y ), where g(y) =

∫
R
xfX|Y (x, y)dy =

∫
R
x
fX,Y (x, y)

fY (y)
dy.

Example 10.2. Let X1, X2
i.i.d.∼ Unifrom(0, 1), and Y = max{X1, X2}, X = X1. Then one version of

E[X|Y ] is h(Y ) = 3
4Y . In addition, another version can be given by

h1(Y ) =

{
3
4Y, if Y is irrational,

0, otherwise.

10.1.2 Properties

Some basic properties of conditional expectation coincide with expectation, including

1) Linearity. If E[X], E[Y ], and E[X + Y ] all exist, then E[X|C] + E[Y |C] is a version of E[X + Y |C].

2) Monotonicity. If X1 ≤ X2 a.s., then E[X1|C] ≤ E[X2|C] a.s.

3) Jensen’s inequality. Let E(X) be finite. If φ is a convex function and φ(X) ∈ L1, then E[φ(X)|MC] ≥
φ(E[X|C]) a.s.

4) Convergence theorems: monotone convergence theorem, dominant convergence theorem.

Theorem 10.3 (Convergence theorem). Let C be a sub-σ-field of F .

1) (Monotone) If 0 ≤ Xn ≤ X a.s. for all n and Xn → X a.s., then E[Xn|C]→ E[X|C].

2) (Dominant) If Xn → X a.s. and |Xn| ≤ Y a.s., where Y ∈ L1, then E[Xn|C]→ E[X|C].

Proposition 10.4 (Tower property of conditional expectation). If sub-σ-fields C1 ⊆ C2 ⊆ F , and E|X| <∞,
then E[X|C1] is a version of E[E[X|C2]|C1]. In particular, E[X] = E[E[X|C]] (taking C = {∅,Ω}).

10.2 Regular Conditional Probability

Notice that Pr(·|C)(·) is a function defined on F × Ω.

• By definition, for A ∈ F , Pr(A|C)(·) is a version of E[1A|C](·).

• We would like ∀ω ∈ Ω, Pr(·|C)(ω) to be a probability measure on (Ω,F).

It is easy to see that Pr(A|C)(·) ∈ [0, 1] a.s.[P ] as a function of ω on (Ω, C, P ). We can also prove that it is
countably additive a.e.[P ]:
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Proposition 10.5. If {An}∞n=1 is a sequence of disjoint F-measurable sets, then

W (ω) =

∞∑
n=1

Pr(An|C)(ω)

is a version of Pr(
⋃∞

n=1An|C).

This proposition means that given a sequence of disjoint F-measurable sets {An}∞n=1, for [P ]a.e. ω, we have

∞∑
n=1

Pr(An|C)(ω) = Pr(

∞⋃
n=1

An|C)(ω).

In general, however, for the collection of functions {Pr(A|C)(·)} : A ∈ F} and a given ω ∈ Ω, Pr(·|C)(ω) is
not necessarily countably additive, and therefore is not a probability measure. Even in the sense of a.s.[P ]
(with respect to ω ∈ Ω), Pr(·|C)(ω) is not necessarily a probability measure.

The intuition is, for a given {An}∞n=1 of disjoint F-measurable sets, to make
∑∞

n=1 Pr(An|C)(ω) = Pr(
⋃∞

n=1An|C)(ω)
(in the sense of a.s.[P ]), we can only allow Pr(

⋃∞
n=1An|C)(ω) 6=

∑∞
n=1 Pr(An|C)(ω) for ω in a P -measure-0

set N({An}∞n=1) ⊆ Ω.

Therefore, to make Pr(·|C)(ω) a probability measure (also in the sense of a.s.[P ]), we want

P (N({An}∞n=1)) = 0

to hold a.s.[P ] (w.r.t. ω) over all possible choices of sequence {An}∞n=1. To ensure this, We need

P (
⋃
{An}

N({An}∞n=1)) = 0.

However, since there are uncountably many sequences {An}∞n=1, this may not necessarily hold. When this
nontrivial property holds, we call Pr(·|C)(·) : A× Ω→ [0, 1] a regular conditional probability.

Definition 10.6 (Regular conditional probability). Given a probability space (Ω,F , P ). Let A ⊆ F be a
sub-σ-field. We say that the function Pr(·|C)(·) : A× Ω→ [0, 1] is a regular conditional probability (rcd) if

1) ∀A ∈ A, Pr(A|C)(·) is a version of E[1A|C].

2) For [P ]a.e. ω ∈ Ω, Pr(·|C)(ω) is a probability measure on (Ω,A).

10.2.1 Regular Conditional Distribution

Let A = σ(X) for some r.v. X that is F/B measurable. For each B ∈ B, let

µX|C(B)(ω) = Pr(X−1(B)|C)(ω).

Then function µX|C(·|C)(·) : B × Ω→ [0, 1] is called a regular conditional distribution of X given C when

1) ∀B ∈ B, µX|C(B|C)(·) is a version of E[1X∈B |C].

2) For [P ]a.e. ω ∈ Ω, µX|C(·|C)(ω) is a probability measure on (R,B).


