36-752 Advanced Probability Overview

Lecture 10: March 1

Lecturer: Alessandro Rinaldo

Scribes: Wanshan Li

Spring 2018

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

10.1 Conditional Expectation

Given a probability space (Ω, \mathcal{F}, P) , let $\mathcal{C} \subseteq \mathcal{F}$ be a sub- σ -field of \mathcal{F} , and a fixed set $A \in \mathcal{F}$. Our goal is to define the conditional probability $P(A|\mathcal{C})$. The point is that, \mathcal{C} provides us additional information, so $P(A|\mathcal{C})$ would be different from P(A).

First we consider of a special case $C = \sigma(B_1, \dots, B_n)$ where $\{B_1, \dots, B_n\}$ is a partition of Ω . The additional information here is that, for any $\omega \in \Omega$, one knows whether $\omega \in B_k$ or not.

Define $f: \Omega \to \mathbb{R}$ by

$$f(\omega) = \begin{cases} \frac{P(A \cap B_k)}{P(B_k)}, & \text{if } \omega \in B_k \text{ and } P(B_k) > 0\\ c_k, & \text{if } \omega \in B_k \text{ and } P(B_k) = 0, \end{cases}$$
(10.1)

where $c_k \in \mathbb{R}$ can be any constant. Now we define the conditional probability, as a real-valued function on Ω , by $\Pr(A|\mathcal{C})(\omega) = f(\omega)$. The following fact shows that our definition is reasonable in a way:

$$P(A \cap B_k) = P(A|B_k)P(B_k) = \int_{B_k} \Pr(A|\mathcal{C})(\omega)dP(\omega).$$

Now let \mathcal{C} be a generic sub- σ -field of \mathcal{F} . We can create a measure ν on (Ω, \mathcal{C}) , given by

$$\nu(B) = P(A \cap B).$$

If we can find some C-measurable function f, such that (Notice that P is originally defined on (Ω, \mathcal{F}) , but here we can treat it as a probability measure on (Ω, \mathcal{C}) as $\mathcal{C} \subseteq \mathcal{F}$)

$$\nu(B) = P(A \cap B) = \int_B f(\omega) dP(\omega),$$

then we define function f to be the *conditional probability of* A given C, and denote it as $f = \Pr(A|C)$. Thus by our definition

- 1) $\Pr(A|\mathcal{C})(\cdot)$ is \mathcal{C} -measurable.
- 2) $\forall B \in \mathcal{C}, \, \nu(B) = P(A \cap B) = \int_B \Pr(A|\mathcal{C})(\omega) dP(\omega).$

Remark There exists many versions of $Pr(A|\mathcal{C})(\cdot)$, but by property 2), these versions are equal to each other a.s.[P].

Let $X(\omega) = \mathbb{1}_A(\omega)$, then we may want to write

$$\Pr(A|\mathcal{C}) = \mathbb{E}(X|\mathcal{C}).$$

By generalizing X from an indicator function to any random variable we can get the definition of the conditional expectation.

Definition 10.1. Given a probability space (Ω, \mathcal{F}, P) , let $\mathcal{C} \subseteq \mathcal{F}$ be a sub- σ -field of \mathcal{F} , and X an \mathcal{F}/\mathcal{B} measurable random variable with $\mathbb{E}|X| < \infty$. The conditional expectation of X given \mathcal{C} is any real valued
function $h : \Omega \to \mathbb{R}$, such that

- 1) h is C-measurable.
- 2) $\int_B h(\omega) dP(\omega) = \int_B X(\omega) dP(\omega), \forall B \in \mathcal{C}.$

h is denoted as $\mathbb{E}[X|\mathcal{C}]$.

Remark

- $f = \mathbb{E}[X|\mathcal{C}]$ means f is a version of $\mathbb{E}[X|\mathcal{C}]$.
- By 2) in the definition, if h_1 and h_2 are two versions of $\mathbb{E}[X|\mathcal{C}]$, then $h_1(\omega) = h_2(\omega)$, a.s.[P]. Conversely, if h_1 is a version of $\mathbb{E}[X|\mathcal{C}]$ and $h_1(\omega) = h_2(\omega)$, a.s.[P], then h_2 is also a version of $\mathbb{E}[X|\mathcal{C}]$.
- If $\mathcal{C} = \{ \emptyset, \Omega \}$, then $\mathbb{E}[X|\mathcal{C}] = \mathbb{E}[X]$.
- If X itself is \mathcal{C}/\mathcal{B} measurable, then $X = \mathbb{E}[X|\mathcal{C}]$.
- If X = a, a.s., then $\mathbb{E}[X|\mathcal{C}] = a$, a.s.

10.1.1 Two perspectives

RN derivative One may ask "Does this function exist?". The answer is "Yes", and one can demonstrate this by using *RN derivative*. Assume $X \ge 0$, *a.s.*, the sketched proof is: define $\nu(B) = \int_B X(\omega) dP(\omega)$, then ν is a measure on (Ω, \mathcal{C}) . By the RN theorem, $\exists h$, which is \mathcal{C} -measurable and $\forall B \in \mathcal{C}$,

$$\nu(B) = \int_B h(\omega) dP(\omega).$$

Then by definition, the RN derivative h is the conditional expectation $\mathbb{E}[X|\mathcal{C}]$.

Projection An alternative perspective is to think of $\mathbb{E}[X|\mathcal{C}]$ as a "projection". Given a r.v. X on (Ω, \mathcal{F}, P) s.t. $\mathbb{E}X^2 < \infty$ and $\mathcal{C} \subseteq \mathcal{F}$. Consider $L^2(\Omega, \mathcal{C}, P)$, a Hilbert space of r.v.'s that are \mathcal{C} -measurable and L_2 . Then one can show that, the \mathcal{C} -measurable random variable Z is the conditional expectation of X if and only if Z is the orthogonal projection of X onto $L^2(\Omega, \mathcal{C}, P)$, that is

$$\mathbb{E}[W(X-Z)] = 0, \ \forall W \in L^2(\Omega, \mathcal{C}, P),$$

or equivalently,

$$Z = \operatorname*{argmin}_{W \in L^2(\Omega, \mathcal{C}, P)} \mathbb{E}(X - W)^2.$$

$$\mathbb{E}[X|Y] \triangleq \mathbb{E}[X|\mathcal{C}] = \operatorname*{argmin}_{\text{meas. function } g, \ s.t. \ \mathbb{E}[g(Y)]^2 < \infty} \mathbb{E}(X - g(Y))^2.$$

Recall that the usual machinery of defining $\mathbb{E}[X|Y]$ is

$$\mathbb{E}[X|Y] = g(Y), \text{ where } g(y) = \int_{\mathbb{R}} x f_{X|Y}(x,y) dy = \int_{\mathbb{R}} x \frac{f_{X,Y}(x,y)}{f_Y(y)} dy.$$

Example 10.2. Let $X_1, X_2 \stackrel{i.i.d.}{\sim}$ Unifrom (0, 1), and $Y = \max\{X_1, X_2\}$, $X = X_1$. Then one version of $\mathbb{E}[X|Y]$ is $h(Y) = \frac{3}{4}Y$. In addition, another version can be given by

$$h_1(Y) = \begin{cases} \frac{3}{4}Y, & \text{if } Y \text{ is irrational,} \\ 0, & \text{otherwise.} \end{cases}$$

10.1.2 Properties

Some basic properties of conditional expectation coincide with expectation, including

- 1) Linearity. If $\mathbb{E}[X]$, $\mathbb{E}[Y]$, and $\mathbb{E}[X+Y]$ all exist, then $\mathbb{E}[X|\mathcal{C}] + \mathbb{E}[Y|\mathcal{C}]$ is a version of $\mathbb{E}[X+Y|\mathcal{C}]$.
- 2) Monotonicity. If $X_1 \leq X_2$ a.s., then $\mathbb{E}[X_1|\mathcal{C}] \leq \mathbb{E}[X_2|\mathcal{C}]$ a.s.
- 3) Jensen's inequality. Let $\mathbb{E}(X)$ be finite. If ϕ is a convex function and $\phi(X) \in L^1$, then $\mathbb{E}[\phi(X)|MC] \ge \phi(\mathbb{E}[X|\mathcal{C}]) \ a.s.$
- 4) Convergence theorems: monotone convergence theorem, dominant convergence theorem.

Theorem 10.3 (Convergence theorem). Let C be a sub- σ -field of \mathcal{F} .

- 1) (Monotone) If $0 \leq X_n \leq X$ a.s. for all n and $X_n \to X$ a.s., then $\mathbb{E}[X_n|\mathcal{C}] \to \mathbb{E}[X|\mathcal{C}]$.
- 2) (Dominant) If $X_n \to X$ a.s. and $|X_n| \leq Y$ a.s., where $Y \in L^1$, then $\mathbb{E}[X_n|\mathcal{C}] \to \mathbb{E}[X|\mathcal{C}]$.

Proposition 10.4 (Tower property of conditional expectation). If sub- σ -fields $C_1 \subseteq C_2 \subseteq \mathcal{F}$, and $\mathbb{E}|X| < \infty$, then $\mathbb{E}[X|C_1]$ is a version of $\mathbb{E}[\mathbb{E}[X|C_2]|C_1]$. In particular, $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|C]]$ (taking $C = \{\emptyset, \Omega\}$).

10.2 Regular Conditional Probability

Notice that $\Pr(\cdot|\mathcal{C})(\cdot)$ is a function defined on $\mathcal{F} \times \Omega$.

- By definition, for $A \in \mathcal{F}$, $\Pr(A|\mathcal{C})(\cdot)$ is a version of $\mathbb{E}[\mathbb{1}_A|\mathcal{C}](\cdot)$.
- We would like $\forall \omega \in \Omega$, $\Pr(\cdot | \mathcal{C})(\omega)$ to be a probability measure on (Ω, \mathcal{F}) .

It is easy to see that $Pr(A|\mathcal{C})(\cdot) \in [0,1]$ a.s.[P] as a function of ω on (Ω, \mathcal{C}, P) . We can also prove that it is countably additive *a.e.*[P]:

Proposition 10.5. If $\{A_n\}_{n=1}^{\infty}$ is a sequence of disjoint \mathcal{F} -measurable sets, then

$$W(\omega) = \sum_{n=1}^{\infty} \Pr(A_n | \mathcal{C})(\omega)$$

is a version of $\Pr(\bigcup_{n=1}^{\infty} A_n | \mathcal{C})$.

This proposition means that given a sequence of disjoint \mathcal{F} -measurable sets $\{A_n\}_{n=1}^{\infty}$, for $[P]a.e. \omega$, we have

$$\sum_{n=1}^{\infty} \Pr(A_n | \mathcal{C})(\omega) = \Pr(\bigcup_{n=1}^{\infty} A_n | \mathcal{C})(\omega).$$

In general, however, for the collection of functions $\{\Pr(A|\mathcal{C})(\cdot)\}: A \in \mathcal{F}\}$ and a **given** $\omega \in \Omega$, $\Pr(\cdot|\mathcal{C})(\omega)$ is not necessarily countably additive, and therefore is not a probability measure. Even in the sense of a.s.[P] (with respect to $\omega \in \Omega$), $\Pr(\cdot|\mathcal{C})(\omega)$ is not necessarily a probability measure.

The intuition is, for a given $\{A_n\}_{n=1}^{\infty}$ of disjoint \mathcal{F} -measurable sets, to make $\sum_{n=1}^{\infty} \Pr(A_n|\mathcal{C})(\omega) = \Pr(\bigcup_{n=1}^{\infty} A_n|\mathcal{C})(\omega)$ (in the sense of a.s.[P]), we can only allow $\Pr(\bigcup_{n=1}^{\infty} A_n|\mathcal{C})(\omega) \neq \sum_{n=1}^{\infty} \Pr(A_n|\mathcal{C})(\omega)$ for ω in a P-measure-0 set $N(\{A_n\}_{n=1}^{\infty}) \subseteq \Omega$.

Therefore, to make $Pr(\cdot|\mathcal{C})(\omega)$ a probability measure (also in the sense of a.s.[P]), we want

$$P(N(\{A_n\}_{n=1}^{\infty})) = 0$$

to hold a.s. [P] (w.r.t. ω) over all possible choices of sequence $\{A_n\}_{n=1}^{\infty}$. To ensure this, We need

$$P(\bigcup_{\{A_n\}} N(\{A_n\}_{n=1}^{\infty})) = 0.$$

However, since there are uncountably many sequences $\{A_n\}_{n=1}^{\infty}$, this may not necessarily hold. When this nontrivial property holds, we call $\Pr(\cdot|\mathcal{C})(\cdot) : \mathcal{A} \times \Omega \to [0,1]$ a regular conditional probability.

Definition 10.6 (Regular conditional probability). Given a probability space (Ω, \mathcal{F}, P) . Let $\mathcal{A} \subseteq \mathcal{F}$ be a sub- σ -field. We say that the function $Pr(\cdot|\mathcal{C})(\cdot) : \mathcal{A} \times \Omega \to [0,1]$ is a regular conditional probability (rcd) if

- 1) $\forall A \in \mathcal{A}, \Pr(A|\mathcal{C})(\cdot) \text{ is a version of } \mathbb{E}[\mathbb{1}_A|\mathcal{C}].$
- 2) For $[P]a.e. \ \omega \in \Omega$, $\Pr(\cdot | \mathcal{C})(\omega)$ is a probability measure on (Ω, \mathcal{A}) .

10.2.1 Regular Conditional Distribution

Let $\mathcal{A} = \sigma(X)$ for some r.v. X that is \mathcal{F}/\mathcal{B} measurable. For each $B \in \mathcal{B}$, let

$$\mu_{X|\mathcal{C}}(B)(\omega) = \Pr(X^{-1}(B)|\mathcal{C})(\omega).$$

Then function $\mu_{X|\mathcal{C}}(\cdot|\mathcal{C})(\cdot): \mathcal{B} \times \Omega \to [0,1]$ is called a regular conditional distribution of X given \mathcal{C} when

- 1) $\forall B \in \mathcal{B}, \, \mu_{X|\mathcal{C}}(B|\mathcal{C})(\cdot) \text{ is a version of } \mathbb{E}[\mathbb{1}_{X \in B}|\mathcal{C}].$
- 2) For $[P]a.e. \ \omega \in \Omega, \ \mu_{X|\mathcal{C}}(\cdot|\mathcal{C})(\omega)$ is a probability measure on $(\mathbb{R}, \mathcal{B})$.