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Last Time: Martingales

Let (Ω,F , P ) be a probability space, and let {(Fn, Xn)}∞n=1 be a martingale where F1 ⊆ F2 ⊆ · · · is a
sequence of sub-σ-fields of F and {Xn}∞n=1 is a collection of random variables such that Xn is an Fn-meas.
random variable. Explicitly, we say {Xn}∞n=1 is a martingale relative to the filtration {Fn}∞n=1 if Xn : Ω 7→ R
is Fn-measurable and

1. E[|Xn|] <∞ for all n, and

2. E[|Xn+1|Fn] = Xn for all n.

If E[|Xn+1|Fn] ≥ Xn for all n, we say {(Fn, Xn)}∞n=1 is a submartingale. If {(Fn, Xn)}∞n=1 ≤ Xn, we call it
a supermartingale.

13.1 Stopping Times

Let (Ω,F , P ) be a probability space, and let {Fn}∞n=1 be a filtration.

Definition 13.1 (Stopping times). A positive1 (possibly extended) integer valued random variable τ is
called a stopping time with respect to the filtration if {τ = n} ∈ Fn for all finite n.

If {Xn}∞n=1 is adapted to the filtration and τ < ∞ a.s.2, then we define Xτ as Xτ(ω)(ω). A special σ-field
Fτ is defined by

Fτ = {A ∈ F : A ∩ {τ ≤ k} ∈ Fk ∀ finite k}

where τ is measurable with respect to Fτ and Xτ is Fτ -measurable.

Example 16 (Gambler’s ruin). Suppose there is a gambling system where {Xn} are independent
Rademacher random variables such that P(Xn = 1) = P(Xn = −1) = 1/2. We define how much money was
won or lost by Zn =

∑n
i=1Xi. Suppose the gambler chooses the stopping time τ = min{n : Zn ≥ 0}, for

some target integer x > 0. In other words, the gambler keeps playing until x money is won.

This seems like a desirable strategy which guarantees winning at least x. However, there are two drawbacks.

1If your filtration starts at n = 0, you can allow stopping times to be nonnegative valued. Indeed, if your filtration starts at
an arbitrary integer k, then a stopping time can take any value from k on up. There is a trivial extension of every filtration to
one lower subscript. For example, if we start at n = 1, we can extend to n = 0 by defining F0 = {Ω, ∅}. Every martingale can
also be extended by defining X0 = E(X1). We will assume that the lowest possible value for a stopping time is 1.

2If τ = ∞, let Xτ be equal to some arbitrary random variable X∞.
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1. In order to play this strategy, the gambler must have an unlimited reserve of money. First, note that
we will stop as soon as we have won x more than we have lost. If the gambler starts with k dollars,
the probability of winning Zn = x before Zn = −k is k/(k + x), which goes 1 as k → ∞. Therefore,
given unlimited resources, we have that τ <∞ with probability 1. Otherwise, if the gambler has finite
capital, this goal may never be achieved and Zn can be arbitrarily negative.

2. Further suppose the game is unfair, i.e. P(Xn = −1) > P(Xn = 1). Then P(τ = ∞) > 0, meaning
there is a positive probability the gambler will never stop.

13.2 Sequences of Stopping Times

Suppose τ1 and τ2 are two stopping times such that τ1 ≤ τ2. Let A ∈ Fτ1 . Since A ∩ {τ2 ≤ k} = A ∩ {τ1 ≤
k} ∩ {τ2 ≤ k}, it follows that A ∩ {τ2 ≤ k} ∈ Fk, and A ∈ Fτ2 . This implies that Fτ1 ⊆ Fτ2 .

Now imagine we have a martingale {(Fn, Xn)}∞n=1 and a sequence of a.s. finite stopping times {τn}∞n=1 such
that τj ≤ τj+1 for all j. Then we can construct a sub-martingale {(Fτn , Xτn)}∞n=1. This is known as the
optional sampling theorem.

Theorem 13.2 (Optional sampling theorem) Let {(Fn, Xn)}∞n=1 be a (sub)martingale and let {τn}∞n=1

be a sequence of stopping times such that τn ≤ Mn for all n a.s, where Mn is a finite constant. Then
{(Fτn , Xτn)}∞n=1 is a (sub)martingale.

Proof: (Optimal sampling theorem).

Without loss of generality, assume that Mn ≤Mn+1 for each n. We first show that E[|Xτn |] is finite. Since
τn ≤Mn for all n,

E[|Xτn |] =

Mn∑
k=1

∫
{τn=k}

|Xk|dP ≤
Mn∑
k=1

E[|Xk|] <∞

using that E[|Xk|] <∞.

Next, to prove the second condition E[Xτn+1
|Fτn ] (≥) = Xτn holds, we first note that Xτn is Fτn -measurable.

Let A ∈ Fτn . We would like to show that∫
A

Xτn+1dP
(≥)
=

∫
A

XτndP for all n.

Write ∫
A

(Xτn+1
−Xτn)dP =

∫
A∩{τn≤τn+1}

(Xτn+1
−Xτn)dP.

For each ω ∈ {τn ≤ τn+1}, we have that

Xτn+1
(ω)−Xτn(ω) =

∑
k: τn(ω)<k≤τn+1(ω)

(Xk(ω)−Xk−1(ω)).

The smallest k such that τn < k is k = 2. Therefore,∫
A∩{τn>τn+1}

(Xτn+1
−Xτn)dP =

∫
A

Mn+1∑
k=2

1{τn < k ≤ τn+1}(Xk −Xk−1)dP.
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Since A ∈ Fτn and {τn < k ≤ τn+1} = {τn ≤ k − 1} ∩ {τn+1 ≤ k − 1}c, it follows that Bk ∈ A ∪ {τn < k ≤
τn+1} ∈ Fk−1 for any k. Hence,

∫
A

(Xτn+1
−Xτn)dP =

Mn+1∑
k=2

∫
Bk

(Xk −Xk−1)dP

(≥)
=

Mn+1∑
k=2

∫
Bk

(Xk − E[Xk|Fk−1])dP

= 0

since Bk ∈ Fk−1 and E[Xk|Fk−1]
(≥)
= Xk−1. We conclude that∫

B

Xk−1dP =

∫
B

XkdP

for all B ∈ Fk−1.

Corollary 13.3 (Submartingale maximal inequality corollary) If X1, X2, . . . , Xn is a submartingale
with respect to the filtration {Fn}, then for all α > 0

P

(
max

i=1,...,n
Xi ≥ α

)
≤ 1

α
E[|Xn|].

We could also use Markov’s inequality to say that if Xi ≥ 0 ∀i, then P(maxiXi ≥ α) ≤ α−1E[maxiXi]. This
is a worse bound.

The corollary also extends Kolmogorov’s maximal inequality, which says that if X1, X2, . . . , Xn are zero-mean
independent random variables with finite variance, then

P

(
max
i
|
k∑
i=1

Xi| ≥ α

)
≤ Var(Sn)

α2

where Sn =
∑n
i=1Xi.

Proof: (Submartingale maximal inequality corollary).

Let n be a positive integer, and define stopping times τ2 = n and τ1 = min{k ≥ 0 : Xk ≥ α}. If there is no
such k, set τ1 = n.

Let Mk = maxi=1,...,kXi. Then for all k, {Mn ≥ α} ∩ {τ1 ≤ k} = {Mk ≥ α} ∈ Fk. It follows that
{Mk ≥ α} ∈ Fτ1 . So,

αP(Mn ≥ α) ≤
∫
{Mn≥α}

Xτ1 dP

since Xτ1 ≥ α. Using the optional sampling theorem, we have that Xτ1 ≤ E[Xτ2 |Fτ1 ]. Therefore, we have
that ∫

{Mn≥α}
Xτ1 dP ≤

∫
{Mn≥α}

E[Xτ2 |Fτ1 ] dP.
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Since {Mn ≥ α} ∈ Fτ1 ⊆ Fτ2 ,∫
{Mn≥α}

E[Xτ2 |Fτ1 ] dP =

∫
{Mn≥α}

Xτ2 dP

=

∫
{Mn≥α}

Xn dP

≤
∫
{Mn≥α}

X+
n dP where X+

n is max{Xn, 0}

≤ E[X+
n ] ≤ E[|Xn|].

13.3 Convergence of Random Variables

We will discuss three types of convergence for random variables,

1. Convergence in probability,

2. Convergence in Lp,

3. Convergence almost surely.

Convergence in distribution is a weaker form of convergence that will be discussed later in the course.

Definition 13.4 (Convergence in probability). Let (Ω,F , P ) be a probability space. A sequence {Xn}
of random variables converges in probability to a random variable X when, for any ε > 0,

P ({ω : |Xn(ω)−X(ω)| > ε})→ 0 as n→∞.

We denote this as Xn
p−→ X.

In other words, it is when the measure of all ω such that |Xn(ω) −X(ω)| > ε goes to zero. Note that this
does not imply that Xn(ω)→ X(ω) ∀ω in a set of zero probability.

Example 13.3. Let Xn take values in {0, 1} such that P(Xn = 1) = 1 − P(Xn = 0) = 1
2
n+1
n . Let

X ∼ Bernoulli(1/2). Does Xn
p−→ X?

Answer: In general, no. Consider these two scenarios.

1. Take Xn ⊥⊥ X for all n. Then ∀ε ∈ (0, 1) we have that

P(|Xn −X| ≥ ε) = P(Xn +X = 1) = P(Xn = 0 ∩X = 1) + P(Xn = 1 ∩X = 0)

=
1

4

n+ 1

n
+

1

4

n− 1

n
=

1

2
.

Hence, Xn 6
p−→ X.

2. However, if we take P(Xn = 1|X = 1) = 1 and P(Xn = 1|X = 0) = 1/n, then

P(Xn = 1) =
1

2

n+ 1

n
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and ∀ε ∈ (0, 1),

P(|Xn −X| ≥ ε) = P(Xn = 1|X = 0)P(X = 0) + P(Xn = 0|X = 1)P(X = 1)

=
1

2n
→ 0 as n→∞.

In this case, Xn
p−→ X.

Most common statement. Usually, we are more interested in if Xn converges in probability to some
constant c, rather than a random variable.

We can extend convergence in probability to general measures and distances.

Definition 13.5 (Convergence in measure). Let (Ω,F , µ) be a measure space. Let {fn} be a sequence
of measurable functions on (Ω, f) taking values on the metric space (X , d). Let f be a measurable function
taking values in (X , d). Then we say fn converges in measure to f if, for any ε > 0,

µ({ω : d(fn(ω), f(ω)) > ε})→ 0 as n→∞.

If we take µ to be a probability, convergence in measure is called convergence in probability.


