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14.1 Convergence in Measure/Probability

Let (Ω, F , µ) be a measure space, and let {Xn} be a sequence of random variables taking values in a
metric space (X , d). Let X also be a random variable taking a value in (X , d). Recall that a metric
d : X × X 7→ [0, ∞) satisfies the following properties:

1. d(x1, x2) ≥ 0

2. d(x, y) ≤ d(x, z) + d(y, z)

3. d(x, y) = 0 iff x = y

Definition 14.1 (Convergence in Measure) Xn is said to converge in measure to X when ∀ε > 0,
µ
(
{ω : d(Xn(ω), X(ω)) > ε}

)
→ 0 as n → ∞. If µ is a probability measure, this becomes convergence in

probability. This is denoted Xn
p→ X.

To conclude that Xn
p→ X, we need to know joint distribution of Xn, X. See the the Bernoulli example,

Example 13.3, for intuition.

14.1.1 Extension to Random Vectors

Now let {Xn} be a sequence of random vectors in Rd. Let {X} also be a random vector in Rd. Then,

Xn
p→ X means that ∀ε > 0, P (‖Xn −X‖ > ε)→ 0 as n→∞.

For homework: Let Xn(J) and X(J) indicate the Jth coordinate of Xn, X respectively (J = 1, ..., k). We

will show that Xn
p→ X iff Xn(J)

p→ X(p) ∀J .

14.1.2 Little-oh Notation

Definition 14.2 (o(·) notation) Let {Xn} and {Yn} be sequences in some common probability space. Then,

in little-oh notation, Xn = o(Yn) means that Xn

Yn

p→ 0. Then, ∀ε > 0 ∃n0 = n0(ε) s.t. ∀n > n0, |Xn

Yn
| < ε.

Definition 14.3 (op(·) notation) Let {Xn} be a sequence of random variables/vectors in some probability

space, and let {rn} be a sequence of positive numbers. Then, Xn = op(rn) means that Xn

rn

p→ 0. Then, ∀ε > 0

∃n0 = n0(ε) s.t. ∀n > n0, |Xn

rn
| < ε or ‖Xn‖

Yn
< ε.
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We can use the o(·) and op(·) to cleanly express the Weak Law of Large Numbers.

Theorem 14.4 (WLLN) Let {Xn} be a sequence of random variables s.t. E[Xn] = µ ∀n, V [Xn] = σ2 <

∞, and cov(xn, xn′) = 0 ∀n 6= n′. If 1
n2

∑n
i=1 σ

2
i → 0, then 1

n

∑n
i=1Xn

p→ 0.

Proof: Let Sn =
∑n
i=1Xn. By Chebyshev’s inequality, ∀ε > 0,

P
(
|Sn
n
− µ|

)
≤
V [Sn

n ]

ε2
=

1

n2
1

ε

n∑
i=1

σ2
i → 0

Then, we can say that Sn

n − µ = op(1) ⇐⇒ Sn

n = µ+ op(1). We can view op(1) as the random fluctuations
about the mean, which converge to 0.

This notation says nothing about rates. In fact, asymptotics are hidden by the notation. For example:

Xn = op(1) & Yn = op(1) =⇒ Xn + Yn = op(1)

Xn = op(rn) & Yn = op(rn) =⇒ Xn + Yn = op(rn)

Similarly, Xn = op(rn) =⇒ KXn = op(rn) ∀K ∈ R. We can also extend op(·) notation to include
Xn = op(Yn), which signifies Xn

Yn
= op(1). Again, this tells us nothing about the asymptotics.

14.1.3 Taylor Expansions

Let a function f have d derivatives at the point θ0. Also suppose that Xn = θ0 +op(1) (i.e. Xn
p→ θ0). Then

there exists a sequence {Yn} s.t. Yn = op(1) s.t.

f(Xn) = f(θ0) + (Xn − θ0)f ′(θ0) + ...+
(Xn − θ0)d

d!

[
f (d)(θ0) + Yn

]
In particular,

(Xn − θ0)d

d!

[
f (d)(θ0) + Yn

]
=

(Xn − θ0)d

d!
f (d)(θ0) + op

(
(Xn − θ0)d

)
where op

(
(Xn − θ0)d

)
= op(1); recall that Xnop(1) = op(Xn).

Proof: By the Taylor theorem, ∀ε > 0, ∃δ = δ(ε) s.t. ‖Xn(ω) − θ0| < δ =⇒ n(ω) < ε ∀ω ∈ A s.t.
P (Ac) = 0. Some details are omitted.

Proof: In more detail, {|Xn − θ0|δ} =⇒ {|Yn| < ε}. Since Xn
p→ θ0, ∃n0 = n0(δ, ε) s.t. ∀n > n0,

P (|Xn − θ0| > δ) < ε, so ∀n > n0

P (|Yn| < ε) ≥ P (|Xn − θ0| < δ) > 1− ε

Then, Yn = op(1)

We can take this into multiple dimensions. Let f : Rd 7→ R be twice-differentiable at θ0, and let {Xn} be a

sequence of random vectors in Rd such that Xn
p→ θ0. Then, express

f(Xn) = f(θ0) +∇fT (θ0)(Xn − θ0) +
1

2
(Xn − θ0)T∇2f(θ0)(Xn − θ0) + Yn

In the above, Yn = op(1). In fact, Yn = op(‖Xn − θ0‖2). See once again that op(·) notation hides rates from
us.
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14.1.4 Weak Law of Large Numbers

We can now prove a version of the weak law of large numbers with weaker requirements; we drop the finite
variance requirement.

Theorem 14.5 (WLLN) Let {Xn} be independent and identically distributed random variables s.t. µ =

E[X1] <∞. Let Sn = 1
n

∑n
i=1Xi. Then Sn

n

p→ µ.

Proof: We use the truncation technique. Let t ∈ (0, ∞). Let

Xt, k = XkI{|Xk|<t}

Yt, k = XkI{|Xk|>t}

Then, Xk = Xt, k + Yt, k, so Sn

n = 1
n

∑n
i=1Xt, k + 1

n

∑n
i=1 Yt, k.

Next, let Ut, k = 1
n

∑n
i=1Xt, k and Vt, k = 1

n

∑n
i=1 Yt, k.

Now, we have E[|Vk, t|] ≤ 1
n

∑n
i=1 E[|Yk, t|] = E[XkI{|X1|<t}]

By the Dominated Convergence Theorem, E[XkI{|X1|<t}]→ 0 as t→∞.

We fix ε ∈ (0, 1) and δ ∈ (0, 1). We choose t sufficiently large to bound the previous expectation; choose
t = t(ε, δ) s.t. E[XkI{|X1|<t}] ≤ 2δ

6 . Let µt = E[X1, t]. Then,

|µt − µ| ≤|E[Y1, t]| ≤ E[|Y1, t|] <
εδ

6
<
ε

3

We now let Bn = {|Un, t − µt| > ε
3} and Cn = {|Vn, t| > ε

3}.

To bound P (Bn), we can use the weaker WLLN proved earlier; E[X2
k, t] < t2 ∀k. There exists n0 = n0(ε, δ)

s.t. P (Bn) < δ
2 .

To bound P (Cn), we use Markov’s inequality.

P (Cn) ≤ 3E[|Vn, t|]
ε

≤ 3E[|V1, t|]
ε

≤ δ

2

Now, Bcn∩Ccn is a good set that has probability at least 1− δ by the Union Bound: (Bcn∩Ccn) = (Bn∪Cn)c.
We can set |Un, t − µt| ≤ ε

3 and |Vn, t| ≤ ε
3 .

Now, we can decompose |Sn

n − µ| as

|Sn
n
− µ| ≤ |Un, t − µt|+ |µt − µ|+ |Vn, t| ≤ ε

Each of these terms has been bounded by ε
3 , so P (|Sn

n − µ| > ε) ≤ P (Bn ∪ Cn) ≤ δ.

14.2 Almost Sure Convergence

For a sequence to converge almost surely, it can only violate |Xn − X| < ε finitely many times. In other
words, P (|Xn −X| > εinfinitely often) = 0.
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Definition 14.6 (Almost Sure Convergence) Let (Ω, F , P ) be a probability space, let {Xn} be a se-
quence of random variables in that space, and let X be another random variable. Then, Xn is said to converge
almost surely to X (denoted Xn

a.s.→ X) if any of the following equivalent conditions hold:

• P (|Xn −X| > εinfinitely often) = 0

• P
(
{ω : limn→∞Xn(ω) = X(ω)}

)
= 1

• P (lim supnAn, ω) = 0 where An, ω = {|X ′
n −X| > ε}

We note that this includes no guarantees about uniform convergence. For some ω1 6= ω2, Xn(ω1)→ X(ω1)
at a different rate than Xn(ω2)→ X(ω2).

14.3 Next Time: Lp Convergence

Let p ≥ 1. Then, Xn
Lp→ X if

‖Xn −X‖p = (E[|Xn −X|p])
1
p → 0 as n→∞

For the special case where p = 2, we refer to this as convergence in quadratic mean. Xn
L2→ µ iff V [Xn]→ 0

and E[Xn]→ µ.


