36-752: Advanced Probability Theory Spring 2018

Lecture 14: August 22

Lecturer: Alessandro Rinaldo Scribes: Trey McNeely

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

14.1 Convergence in Measure/Probability

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\{X_n\}$ be a sequence of random variables taking values in a metric space (\mathcal{X}, d) . Let X also be a random variable taking a value in (\mathcal{X}, d) . Recall that a metric $d: \mathcal{X} \times \mathcal{X} \mapsto [0, \infty)$ satisfies the following properties:

- 1. $d(x_1, x_2) \geq 0$
- 2. $d(x, y) \leq d(x, z) + d(y, z)$
- 3. $d(x, y) = 0$ iff $x = y$

Definition 14.1 (Convergence in Measure) X_n is said to converge in measure to X when $\forall \epsilon > 0$, $\mu(\{\omega: d(X_n(\omega), X(\omega)) > \epsilon\}) \to 0$ as $n \to \infty$. If μ is a probability measure, this becomes convergence in probability. This is denoted $X_n \stackrel{p}{\rightarrow} X$.

To conclude that $X_n \stackrel{p}{\to} X$, we need to know joint distribution of X_n , X. See the the Bernoulli example, Example 13.3, for intuition.

14.1.1 Extension to Random Vectors

Now let $\{X_n\}$ be a sequence of random vectors in \mathbb{R}^d . Let $\{X\}$ also be a random vector in \mathbb{R}^d . Then, $X_n \stackrel{p}{\to} X$ means that $\forall \epsilon > 0$, $P(||X_n - X|| > \epsilon) \to 0$ as $n \to \infty$.

For homework: Let $X_n(J)$ and $X(J)$ indicate the Jth coordinate of X_n , X respectively $(J = 1, ..., k)$. We will show that $X_n \stackrel{p}{\rightarrow} X$ iff $X_n(J) \stackrel{p}{\rightarrow} X(p) \forall J$.

14.1.2 Little-oh Notation

Definition 14.2 (o(·) notation) Let $\{X_n\}$ and $\{Y_n\}$ be sequences in some common probability space. Then, in little-oh notation, $X_n = o(Y_n)$ means that $\frac{X_n}{Y_n} \stackrel{p}{\to} 0$. Then, $\forall \epsilon > 0$ $\exists n_0 = n_0(\epsilon)$ s.t. $\forall n > n_0$, $|\frac{X_n}{Y_n}| < \epsilon$.

Definition 14.3 (op(.) notation) Let $\{X_n\}$ be a sequence of random variables/vectors in some probability space, and let $\{r_n\}$ be a sequence of positive numbers. Then, $X_n = op(r_n)$ means that $\frac{X_n}{r_n} \stackrel{p}{\to} 0$. Then, $\forall \epsilon > 0$ $\exists n_0 = n_0(\epsilon) \ s.t. \ \forall n > n_0, \ |\frac{X_n}{r_n}| < \epsilon \ or \ \frac{||X_n||}{Y_n}$ $\frac{\Lambda_n\|}{Y_n}<\epsilon.$

Е

П

We can use the $o(\cdot)$ and $op(\cdot)$ to cleanly express the Weak Law of Large Numbers.

Theorem 14.4 (WLLN) Let $\{X_n\}$ be a sequence of random variables s.t. $\mathbb{E}[X_n] = \mu \forall n, V[X_n] = \sigma^2$ ∞ , and $cov(x_n, x_{n'}) = 0 \,\forall n \neq n'.$ If $\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \to 0$, then $\frac{1}{n} \sum_{i=1}^n X_n \stackrel{p}{\to} 0$.

Proof: Let $S_n = \sum_{i=1}^n X_n$. By Chebyshev's inequality, $\forall \epsilon > 0$,

$$
P(|\frac{S_n}{n} - \mu|) \le \frac{V[\frac{S_n}{n}]}{\epsilon^2} = \frac{1}{n^2} \frac{1}{\epsilon} \sum_{i=1}^n \sigma_i^2 \to 0
$$

Then, we can say that $\frac{S_n}{n} - \mu = op(1) \iff \frac{S_n}{n} = \mu + op(1)$. We can view $op(1)$ as the random fluctuations about the mean, which converge to 0.

This notation says nothing about rates. In fact, asymptotics are hidden by the notation. For example:

$$
X_n = op(1) \& Y_n = op(1) \Longrightarrow X_n + Y_n = op(1)
$$

$$
X_n = op(r_n) \& Y_n = op(r_n) \Longrightarrow X_n + Y_n = op(r_n)
$$

Similarly, $X_n = op(r_n) \implies KX_n = op(r_n)$ $\forall K \in \mathbb{R}$. We can also extend $op(\cdot)$ notation to include $X_n = op(Y_n)$, which signifies $\frac{X_n}{Y_n} = op(1)$. Again, this tells us nothing about the asymptotics.

14.1.3 Taylor Expansions

Let a function f have d derivatives at the point θ_0 . Also suppose that $X_n = \theta_0 + op(1)$ (i.e. $X_n \stackrel{p}{\to} \theta_0$). Then there exists a sequence $\{Y_n\}$ s.t. $Y_n = op(1)$ s.t.

$$
f(X_n) = f(\theta_0) + (X_n - \theta_0)f'(\theta_0) + \dots + \frac{(X_n - \theta_0)^d}{d!} [f^{(d)}(\theta_0) + Y_n]
$$

In particular,

$$
\frac{(X_n - \theta_0)^d}{d!} \left[f^{(d)}(\theta_0) + Y_n \right] = \frac{(X_n - \theta_0)^d}{d!} f^{(d)}(\theta_0) + op((X_n - \theta_0)^d)
$$

where $op((X_n - \theta_0)^d) = op(1)$; recall that $X_nop(1) = op(X_n)$.

Proof: By the Taylor theorem, $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon)$ s.t. $\|X_n(\omega) - \theta_0\| < \delta \implies n(\omega) < \epsilon \ \forall \omega \in A$ s.t. $P(A^c) = 0$. Some details are omitted.

Proof: In more detail, $\{|X_n - \theta_0|\delta\} \implies \{|Y_n| < \epsilon\}$. Since $X_n \stackrel{p}{\to} \theta_0$, $\exists n_0 = n_0(\delta, \epsilon)$ s.t. $\forall n > n_0$, $P(|X_n - \theta_0| > \delta) < \epsilon$, so $\forall n > n_0$

$$
P(|Y_n| < \epsilon) \ge P(|X_n - \theta_0| < \delta) > 1 - \epsilon
$$

Then, $Y_n = op(1)$

We can take this into multiple dimensions. Let $f : \mathbb{R}^d \to \mathbb{R}$ be twice-differentiable at θ_0 , and let $\{X_n\}$ be a sequence of random vectors in \mathbb{R}^d such that $X_n \overset{p}{\to} \theta_0$. Then, express

$$
f(X_n) = f(\theta_0) + \nabla f^T(\theta_0)(X_n - \theta_0) + \frac{1}{2}(X_n - \theta_0)^T \nabla^2 f(\theta_0)(X_n - \theta_0) + Y_n
$$

In the above, $Y_n = op(1)$. In fact, $Y_n = op(||X_n - \theta_0||^2)$. See once again that $op(\cdot)$ notation hides rates from us.

14.1.4 Weak Law of Large Numbers

We can now prove a version of the weak law of large numbers with weaker requirements; we drop the finite variance requirement.

Theorem 14.5 (WLLN) Let $\{X_n\}$ be independent and identically distributed random variables s.t. $\mu =$ $\mathbb{E}[X_1] < \infty$. Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \stackrel{p}{\to} \mu$.

Proof: We use the truncation technique. Let $t \in (0, \infty)$. Let

$$
X_{t, k} = X_k \mathbb{I}_{\{|X_k| < t\}}
$$
\n
$$
Y_{t, k} = X_k \mathbb{I}_{\{|X_k| > t\}}
$$

Then, $X_k = X_{t, k} + Y_{t, k}$, so $\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n X_{t, k} + \frac{1}{n} \sum_{i=1}^n Y_{t, k}$.

Next, let $U_{t, k} = \frac{1}{n} \sum_{i=1}^{n} X_{t, k}$ and $V_{t, k} = \frac{1}{n} \sum_{i=1}^{n} Y_{t, k}$.

Now, we have $\mathbb{E}[|V_{k, t}|] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[|Y_{k, t}|] = \mathbb{E}[X_{k} \mathbb{I}_{\{|X_{1}| \leq t\}}]$

By the Dominated Convergence Theorem, $\mathbb{E}[X_k \mathbb{I}_{\{|X_1| < t\}}] \to 0$ as $t \to \infty$.

We fix $\epsilon \in (0, 1)$ and $\delta \in (0, 1)$. We choose t sufficiently large to bound the previous expectation; choose $t = t(\epsilon, \delta)$ s.t. $\mathbb{E}[X_k \mathbb{I}_{\{|X_1| < t\}}] \leq \frac{2\delta}{6}$. Let $\mu_t = \mathbb{E}[X_{1, t}]$. Then,

$$
|\mu_t - \mu| \le |\mathbb{E}[Y_{1, t}]| \le \mathbb{E}[|Y_{1, t}|] < \frac{\epsilon \delta}{6} < \frac{\epsilon}{3}
$$

We now let $B_n = \{|U_{n, t} - \mu_t| > \frac{\epsilon}{3}\}\$ and $C_n = \{|V_{n, t}| > \frac{\epsilon}{3}\}.$

To bound $P(B_n)$, we can use the weaker WLLN proved earlier; $\mathbb{E}[X_{k, t}^2] < t^2 \forall k$. There exists $n_0 = n_0(\epsilon, \delta)$ s.t. $P(B_n) < \frac{\delta}{2}$.

To bound $P(C_n)$, we use Markov's inequality.

$$
P(C_n) \le \frac{3 \mathbb{E}[|V_{n, t}|]}{\epsilon} \le \frac{3 \mathbb{E}[|V_{1, t}|]}{\epsilon} \le \frac{\delta}{2}
$$

Now, $B_n^c \cap C_n^c$ is a good set that has probability at least $1-\delta$ by the Union Bound: $(B_n^c \cap C_n^c) = (B_n \cup C_n)^c$. We can set $|U_{n, t} - \mu_t| \leq \frac{\epsilon}{3}$ and $|V_{n, t}| \leq \frac{\epsilon}{3}$.

Now, we can decompose $\left|\frac{S_n}{n} - \mu\right|$ as

$$
|\frac{S_n}{n} - \mu| \le |U_{n, t} - \mu_t| + |\mu_t - \mu| + |V_{n, t}| \le \epsilon
$$

Each of these terms has been bounded by $\frac{\epsilon}{3}$, so $P(|\frac{S_n}{n} - \mu| > \epsilon) \le P(B_n \cup C_n) \le \delta$.

14.2 Almost Sure Convergence

For a sequence to converge almost surely, it can only violate $|X_n - X| < \epsilon$ finitely many times. In other words, $P(|X_n - X| > \epsilon \text{infinitely often}) = 0.$

Definition 14.6 (Almost Sure Convergence) Let (Ω, \mathcal{F}, P) be a probability space, let $\{X_n\}$ be a sequence of random variables in that space, and let X be another random variable. Then, X_n is said to converge almost surely to X (denoted $X_n \stackrel{a.s.}{\rightarrow} X$) if any of the following equivalent conditions hold:

- $P(|X_n X| > \epsilon \text{infinitely often}) = 0$
- $P(\{\omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\}) = 1$
- $P(\limsup_n A_{n, \omega}) = 0$ where $A_{n, \omega} = \{ |X'_n X| > \epsilon \}$

We note that this includes no guarantees about uniform convergence. For some $\omega_1 \neq \omega_2$, $X_n(\omega_1) \to X(\omega_1)$ at a different rate than $X_n(\omega_2) \to X(\omega_2)$.

14.3 Next Time: L_p Convergence

Let $p \geq 1$. Then, $X_n \stackrel{L_p}{\rightarrow} X$ if

$$
||X_n - X||_p = (\mathbb{E}[|X_n - X|^p])^{\frac{1}{p}} \to 0 \text{ as } n \to \infty
$$

For the special case where $p=2$, we refer to this as convergence in quadratic mean. $X_n \stackrel{L_2}{\rightarrow} \mu$ iff $V[X_n] \rightarrow 0$ and $\mathbb{E}[X_n] \to \mu$.