36-752: Advance Probability Spring 2018

Lecture 15: March 27

 \blacksquare

Lecturer: Alessandro Rinaldo Scribes: Riccardo Fogliato

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Example 17: Consider the measure space (Ω, \mathcal{F}, P) , where $\Omega = (0, 1)$ and P is the Lebesgue measure. Define the following series of functions:

$$
f_1 = 1
$$
, $f_2 = 1\!\!1_{(0,1/2]}$, $f_3 = 1\!\!1_{[1/2,1)}$, $f_4 = 1\!\!1_{[2/3,1)}$, ...

Then

$$
f_n \xrightarrow{L^p} 0 \,\forall p,
$$

but f_n does not convergence to 0 since $\limsup f_n \neq \liminf f_n$. Example 18: Consider

$$
f_n = \begin{cases} 0 \text{ if } 0 < \omega < \frac{1}{n} \\ \frac{1}{\omega} \text{ if } \omega \ge \frac{1}{n} \end{cases}
$$

Then

$$
\lim_{n \to \infty} f_n(\omega) = \frac{1}{\omega} \quad \forall \omega \in (0, 1)
$$

but f_n does not converge in L^p even if $f_n \in L^p \forall n$. Example 19: Consider

$$
f_n(\omega) \begin{cases} n \text{ if } 0 < \omega < \frac{1}{n} \\ 0 \text{ if } \omega \ge \frac{1}{n} \end{cases}
$$

Then $f_n \stackrel{as}{\longrightarrow} 0$ and $Y_n \stackrel{p}{\longrightarrow} 0$ where $Y_n = f_n(X)$ with X being a uniformly distributed random variable on [0, 1]. However, $\int_0^1 |f_n| dx = n \forall n, p \ge 1$; hence f_n does not convergence in L^p to 0.

Claim 15.1 L^p convergence implies convergence in probability. Almost sure convergence implies convergence in probability.

Proof: First part: prove it using Markov's inequality. Second part: fix $\epsilon > 0$, $A_{n,\epsilon} = \{ |X_n - X| > \epsilon \}.$ Then $A_{n,\epsilon}$ is a decreasing sequence so that

$$
\lim_{n \to \infty} \mathbb{P}(A_{n,\epsilon}) = \lim_{n} \sup \mathbb{P}(A_{n,\epsilon}) \le \mathbb{P}(\lim_{n} \sup A_{n,\epsilon}) = 0
$$

by Fatou's lemma.

Lemma 15.2 Let $\{f_n\}$ and f be non negative functions in $L^1(\Omega, \mathcal{F}, P)$. If $f_n \stackrel{as}{\longrightarrow} f$, then $\int |f_n - f| dP \to 0$ if and only if $\int f_n dP \to \int f dP$ (L^1 convergence).

Proof: First part:

$$
\left|\int f_n - \int f\right|dP \le \int |f_n - f|dP \to 0.
$$

Second part: let $g_n = \min\{f_n, f\}$; then $g_n \leq f$ a.e. and $\int g_n \to \int f$ by dominated convergence theorem. Then

$$
\int |f_n - f|dP = \int f_n dP + \int f dP - 2 \int g_n dP \to \int f dP + \int f dP - 2 \int f dP = 0.
$$

Corollary 15.3 Let μ_n and μ be measures on $(\Omega, \mathcal{F}, \nu)$ with $\mu_n(A) = \int_A f_n d\nu_n$ and $\mu(A) = \int_A f \nu \ \forall A \in \mathcal{F}$. If $\mu(\Omega) = \mu_n(\Omega) < \infty$ and $f_n \stackrel{as}{\longrightarrow} f$, then

$$
\sup_{A \in \mathcal{F}} |\mu_n(A) - \mu(A)| \le \int |f_n - f| d\nu \to 0.
$$

15.1 Strong law of large numbers

Definition 15.4 (Tail σ -field) Let $\tau_n = \sigma(\lbrace X_i, i \geq n \rbrace)$. The tail σ -field is defined as $\tau = \cap_n \tau_n$

Events in τ are not affected by changes in a finite number of terms in the sequence. Some examples of tail events:

- $\{\lim_{n} X_n = x\};$
- $\{\sum_{n} X_n$ converges };
- $\sup_n X_n$ is measurable with respect to τ .

Theorem 15.5 (Kolmogorov 0-1 law) Let $\{X_n\}$ be a sequence of independent random variables. If $A \in \tau$, then $\mathbb{P}(A)$ is either 1 or 0.

Proof: Let $U_n = \sigma(\{X_i : i \leq n\})$ and $U = \cup_n U_n$. Then U is not a σ -field. Let $B \in U, A \in \tau$, then $B \in U \Rightarrow \exists n_0 \text{ s.t. } B \in U_{n_0}$. But since $A \in \tau$, then $A \in \tau_{n_0+1}$. Then

$$
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B),
$$

ie U and τ are independent, hence $\sigma(U)$ is independent of τ . On the other hand, $\tau \subset \sigma(U)$; hence τ is independent of itself. Therefore

$$
\mathbb{P}(A \cap A) = \mathbb{P}(A)\mathbb{P}(A) \,\forall A \in \tau.
$$

This equality is satisfied if and only if $\mathbb{P}(A)$ is either 0 or 1.

Theorem 15.6 (First Borel Cantelli Lemma) Let $\{A_n\}$ be a sequence of events in F such that $\sum_{n\geq 1} \mathbb{P}(A_n)$ ∞. Then

$$
\mathbb{P}(\limsup A_n) = 0
$$

Proof: Let $B_i = \bigcup_{n=i}^{\infty} A_n$. Then B_i is a decreasing sequence, and

$$
\lim_{n} \mathbb{P}(B_i) = \mathbb{P}(\lim B_i) = \mathbb{P}(\cap_i B_i) = \mathbb{P}(\lim \sup A_n).
$$

Then

$$
\mathbb{P}(B_i) \le \sum_{n=i}^{\infty} \mathbb{P}(A_n) \to 0 \text{ as } i \to \infty.
$$

 $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$. Then $\mathbb{P}(\limsup A_n) = 1$. **Theorem 15.7** (Second Borel Cantelli Lemma) Let $\{A_n\}$ be a sequence of independent events in F and

Corollary 15.8 If $X_n \stackrel{p}{\rightarrow} X$, then $\exists \{n_k\}$ st. $X_{n_k} \stackrel{as}{\longrightarrow} X$.

Proof: Wlog consider $n_k > n_{k-1}$ and $\mathbb{P}(d(X_n, X) > \frac{1}{2^k}) < \frac{1}{2^k}$. Then $\sum_{k=1}^{\infty} \mathbb{P}(d(X_{n_k}, X) > \frac{1}{2^k}) < \infty$. By the first Borel Cantelli lemma $\mathbb{P}(d(X_{n_k}, X) > \frac{1}{2^k} i.o.) = 0$. Hence $X_{n_k} \stackrel{as}{\longrightarrow} X \,\forall \omega \in A^c$, $\mathbb{P}(A^c) = 1$.

15.1.1 Completeness of L^p spaces

Definition 15.9 Let (X, d) be a metric space. A sequence $\{X_n\} \subset \chi$ is Cauchy if $\forall \epsilon > 0 \ \exists n \ s.t. \ \forall n, m > 0$ N, $d(X_n, X_m) < \epsilon$.

Example: Let $X = \mathbb{Q}$, $d(x, y) = |x - y|$. Then $x_n = \left(1 + \frac{1}{n}\right)^n$ but $x_n \to e \notin \mathbb{Q}$. Therefore \mathbb{Q} is not complete.

Claim 15.10 If x_n is Cauchy and a subsequence converges to x, then the whole sequence converges to x.

Lemma 15.11 L^p spaces are complete.

15.2 Strong Law of Large Numbers

Theorem 15.12 (Kolmogorov's maximal inequality) Let X_1, \ldots, X_n be independent random variables with mean 0 and finite variance. Let $S_k = \sum_{i=1}^k X_i$, $k = 1, \ldots, n$; then

$$
\mathbb{P}(\max_{k=1,\dots,n}|S_k > \epsilon) \le \frac{Var(S_n)}{\epsilon^2}
$$

Theorem 15.13 Let X_1, \ldots, X_n be independent random variables with mean 0 and bounded variance. If $\sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} \sigma_i^2 < \infty$ $\forall n$, then $\exists S_{\infty}$ s.t. $S_n \to S_{\infty}$ almost surely and in L^2 with $\mathbb{E}[S_{\infty}^2] = \sum_{i=1}^{\infty} \sigma_i^2$.

Proof: L^2 convergence follows from completeness of the space L^2 . For almost surely convergence: S_n is almost surely Cauchy if $\sup_{p,q>n}|S_p-S_q| \stackrel{as}{\longrightarrow} 0 \forall n$. This occurs if $\mathbb{P}(\sup_{p,q>n}|S_p-S_q|>\epsilon) \to 0 \forall \epsilon$ by the homework. П