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Strong Law of Large Numbers (SLLN):

Lemma 16.1 (Kronecker’s lemma)

Let {xn}n, {an}n, ai > 0, i = 1, 2, . . . and an →∞. Suppose
∑∞
n=1

xn
an

<∞. Then,
∑n
i=1 xi
an

→ 0.

Corollary 16.2 X1, X2, . . . are independent RV’s with E[Xi] = 0 all i. If
∑∞
i=1

E[X2
i ]

a2i
<∞ then by L2/a.s.

convergence result, ∑n
i=1Xi

an

a.s.−−→0.

Then, if V ar[Xi] = σ2 all i, take an = n so that
∑∞
i=1

σ2]
n2 <∞ =⇒ Sn

n

a.s.−−→0, Sn =
∑n
i=1Xi.

This remains true even if an = n1/2+ε, ε > 0, then

∞∑
i=1

σ2]

n1+2ε
<∞ =⇒ Sn

n1/2+ε
a.s.−−→0.

Theorem 16.3 (Kolmogorov’s SLLN)

Let X1, X2, . . . be a sequence of iid RV’s such that E[|Xi|] <∞, all i. Then,

Sn
n

a.s.−−→E[X1].

Proof: By truncation argument.

Law of iterated logarithms:

Let X1, X2, . . . be a sequence of iid RV’s such that E[Xi] = 0, V ar[Xi] = σ2, all i. We know that
Sn

n1/2+ε

a.s.−−→0, ε > 0. Then,

lim sup
n

Sn

σ
√
nlog(log(n))

a.s.−−→
√

2 and lim inf
n

Sn

σ
√
nlog(log(n))

a.s.−−→ −
√

2.

We know that lim supn xn = infn supk≥nxk. If x = lim supn xn then ∀ε > 0,∃N(ε) such that xn ≤ x+ε,∀n >
N(ε). In particular, Sn ≥ σ

√
nlog(log(n)) + ε i. o. ∀ε > 0 small enough.

Some interesting results:
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• lim supn
Sn√
n

=∞

• lim infn
Sn√
n

= −∞

• Sn√
n
≈ N(0, σ2) by CLT

• Sn√
2nlog(log(n))

p−→ 0, which means that for every ε small enough, Zn = Sn√
2nlog(log(n))

will be in (−ε, ε)

with high probability, but Zn ∈ (
√

2 − ε,
√

2) i.o. Recall that almost sure convergence is a statement
about individual ω’s. The set of ω’s for which Zn goes in or out of (−ε, ε) or (

√
2− ε,

√
2) changes with

n.

Convergence in distribution:

Convergence in distribution can also be called weak convergence or weak+ convergence.

Let (X , d) with Borel σ-field B. Let {Xn}, X taking values in X ({Xn} and X do not need to be defined
over the same probability space).

Definition 16.4 (Convergence in distribution)

Xn
d−→X (or Xn

D−→X or Xn  X or Xn ⇒ X) when limn→∞E[f(Xn)] = E[f(X)] for all continuous bounded
functions f (or Lipschitz bounded functions).

Let Z1, Z2, . . . independent N(0, 1) and Xn = 1√
n

∑n
i=1 Zi then Xn ∼ N(0, 1) =⇒ Xn

d−→X,X ∼ N(0, 1).

Equivalently, if Xn ∼ N(0, 1), independent for all n, then Xn does not converge to anything.

• Convergence in distribution is a statement about distributions of X’s.

• If X1 ∼ N(0, 1), X2 ∼ N(0, 1), X1, X2 independent, then X1 6= X2 almost surely but X1 = X2 in
distribution.

Example: {Xn} a sequence of Bernoulli R.V.’s: Xn ∼ Bernoulli( 1
2
n+1
n ), X ∼ Bernoulli(1/2). Note that

Xn
d−→ X, but Xn may or may not

p−→ X; it depends on the dependency structure.

Theorem 16.5 (Portmanteau Thm)

The following conditions are equivalent:

1. E[f(Xn)]→ E[f(X)] all bounded continuous f ’s.

2. ∀C ⊆X closed, lim supn P (Xn ∈ C) ≤ P (X ∈ C).

3. ∀A ⊂X open, lim infn P (Xn ∈ A) ≥ P (X ∈ A).

4. ∀B ∈ B such that P (X ∈ ∂B) = 0, limn P (Xn ∈ B) = P (X ∈ B).

Proposition 16.6 1. Xn
p−→ X =⇒ Xn

d−→ X.

2. If X is degenerate (P (X = c) = 1, some c ∈X ) and Xn
d−→ X, then Xn

p−→ X.


