36-752: Advanced Probability Overview Spring 2018

Lecture 16: March 29

Lecturer: Alessandro Rinaldo Scribes: Natalia Lombardi de Oliveira

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Strong Law of Large Numbers (SLLN):

Lemma 16.1 (Kronecker's lemma)

Let $\{x_n\}_n, \{a_n\}_n, a_i > 0, i = 1, 2, \ldots$ and $a_n \to \infty$. Suppose $\sum_{n=1}^{\infty} \frac{x_n}{a_n} < \infty$. Then, $\frac{\sum_{i=1}^n x_i}{a_n} \to 0$.

Corollary 16.2 X_1, X_2, \ldots are independent RV's with $E[X_i] = 0$ all i. If $\sum_{i=1}^{\infty}$ $E[X_i^2]$ $\frac{dA_i}{d_i^2} < \infty$ then by $L_2/a.s.$ convergence result,

$$
\frac{\sum_{i=1}^{n} X_i}{a_n} \xrightarrow{a.s.} 0.
$$

Then, if $Var[X_i] = \sigma^2$ all i, take $a_n = n$ so that $\sum_{i=1}^{\infty} \frac{\sigma^2}{n^2} < \infty \implies \frac{S_n}{n} \frac{a.s.}{\rightarrow} 0$, $S_n = \sum_{i=1}^n X_i$. This remains true even if $a_n = n^{1/2+\epsilon}, \epsilon > 0$, then

$$
\sum_{i=1}^{\infty} \frac{\sigma^2 \rceil}{n^{1+2\epsilon}} < \infty \implies \frac{S_n}{n^{1/2+\epsilon}} \xrightarrow{a.s.} 0.
$$

Theorem 16.3 (Kolmogorov's SLLN)

Let X_1, X_2, \ldots be a sequence of iid RV's such that $E[|X_i|] < \infty$, all i. Then,

$$
\frac{S_n}{n} \xrightarrow{a.s.} E[X_1].
$$

Proof: By truncation argument.

Law of iterated logarithms:

Let X_1, X_2, \ldots be a sequence of iid RV's such that $E[X_i] = 0, Var[X_i] = \sigma^2$, all i. We know that $\frac{S_n}{n^{1/2+\epsilon}} \xrightarrow{a.s.} 0, \epsilon > 0$. Then,

$$
\limsup_n \frac{S_n}{\sigma \sqrt{nlog(log(n))}} \xrightarrow{a.s.} \sqrt{2} \text{ and } \liminf_n \frac{S_n}{\sigma \sqrt{nlog(log(n))}} \xrightarrow{a.s.} -\sqrt{2}.
$$

We know that $\limsup_n x_n = \inf_n \sup_{k\geq n} x_k$. If $x = \limsup_n x_n$ then $\forall \epsilon > 0, \exists N(\epsilon)$ such that $x_n \leq x + \epsilon, \forall n > 0$ $N(\epsilon)$. In particular, $S_n \ge \sigma \sqrt{n \log(\log(n))} + \epsilon$ i. o. $\forall \epsilon > 0$ small enough.

Some interesting results:

- $\limsup_n \frac{S_n}{\sqrt{n}} = \infty$
- $\liminf_n \frac{S_n}{\sqrt{n}} = -\infty$
- $\frac{S_n}{\sqrt{n}} \approx N(0, \sigma^2)$ by CLT
- \bullet $\frac{S_n}{\sqrt{S_n} + S_n}$ $2nlog(log(n))$ $\stackrel{p}{\rightarrow}$ 0, which means that for every ϵ small enough, $Z_n = \frac{S_n}{\sqrt{2\pi k n}}$ $\frac{S_n}{2nlog(log(n))}$ will be in $(-\epsilon, \epsilon)$ with high probability, but $Z_n \in ($ $\sqrt{2} - \epsilon, \sqrt{2}$) i.o. Recall that almost sure convergence is a statement with high probability, but $Z_n \in (\sqrt{2} - \epsilon, \sqrt{2})$ i.o. Kecall that almost sure convergence is a statement about individual ω 's. The set of ω 's for which Z_n goes in or out of $(-\epsilon, \epsilon)$ or $(\sqrt{2} - \epsilon, \sqrt{2})$ changes wit \overline{n} .

Convergence in distribution:

Convergence in distribution can also be called weak convergence or weak + convergence.

Let (\mathscr{X}, d) with Borel σ -field \mathscr{B} . Let $\{X_n\}$, X taking values in $\mathscr{X}(\{X_n\}$ and X do not need to be defined over the same probability space).

Definition 16.4 (Convergence in distribution)

 $X_n \xrightarrow{d} X$ (or $X_n \xrightarrow{\mathcal{D}} X$ or $X_n \rightsquigarrow X$ or $X_n \Rightarrow X$) when $\lim_{n\to\infty} E[f(X_n)] = E[f(X)]$ for all continuous bounded functions f (or Lipschitz bounded functions).

Let Z_1, Z_2, \ldots independent $N(0, 1)$ and $X_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i$ then $X_n \sim N(0, 1) \implies X_n \stackrel{d}{\rightarrow} X, X \sim N(0, 1)$.

Equivalently, if $X_n \sim N(0, 1)$, independent for all n, then X_n does not converge to anything.

- Convergence in distribution is a statement about distributions of X 's.
- If $X_1 \sim N(0, 1), X_2 \sim N(0, 1), X_1, X_2$ independent, then $X_1 \neq X_2$ almost surely but $X_1 = X_2$ in distribution.

Example: $\{X_n\}$ a sequence of Bernoulli R.V.'s: $X_n \sim Bernoulli(\frac{1}{2}\frac{n+1}{n}), X \sim Bernoulli(1/2)$. Note that $X_n \stackrel{d}{\rightarrow} X$, but X_n may or may not $\stackrel{p}{\rightarrow} X$; it depends on the dependency structure.

Theorem 16.5 (Portmanteau Thm)

The following conditions are equivalent:

- 1. $E[f(X_n)] \to E[f(X)]$ all bounded continuous f's.
- 2. $\forall C \subseteq \mathscr{X}$ closed, $\limsup_{n} P(X_n \in C) \leq P(X \in C)$.
- 3. $\forall A \subset \mathcal{X}$ open, $\liminf_{n} P(X_n \in A) \geq P(X \in A)$.
- 4. $\forall B \in \mathcal{B}$ such that $P(X \in \partial B) = 0$, $\lim_{n} P(X_n \in B) = P(X \in B)$.

Proposition 16.6 $\stackrel{p}{\to} X \implies X_n \stackrel{d}{\to} X.$

2. If X is degenerate $(P(X = c) = 1$, some $c \in \mathcal{X}$ and $X_n \stackrel{d}{\to} X$, then $X_n \stackrel{p}{\to} X$.