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Side note on a question asked in an earlier class:

• Question: Can we extend the construction of E[X|C] for a random variable X not in L2?

• Answer: Yes. See the Theorem 12 in the Lecture Notes 6.

• Idea: If X > 0, but X 6∈ L2, then define the sequence Xn = min{X,n} which is in L2 and use the
monotone convergence theorem.

11.1 Regular conditional probabilities

We finish with a theorem regarding the existence of regular conditional distributions. Recall the definitions
of regular conditional probability and regular conditional distribution.

Definition 11.1 (Regular conditional probability) Assume (Ω,F , P ) is a probability space. Let A ⊆ F
be a sub-σ-field. We say that the function Pr(·|C)(·) : A× Ω→ [0, 1] is a regular conditional probability if

1. ∀A ∈ A, Pr(A|C)(·) is a version of E[1A|C].

2. For [P ] a.e. ω ∈ Ω, Pr(·|C)(ω) is a probability measure on (Ω,A).

Definition 11.2 (Regular conditional distribution) Assume (Ω,F , P ) is a probability space. Let X be
random variable such that X : (Ω,F)→ (X ,B). For each B ∈ B, let

µX|C(B|C)(ω) = Pr(X−1(B)|C)(ω).

Then the function µX|C(·|C)(·) : B × Ω→ [0, 1] is called a regular conditional distribution of X given C if

1. ∀B ∈ B, µX|C(B|C)(·) is a version of E[1X∈B |C].

2. For [P ] a.e. ω ∈ Ω, µX|C(·|C)(ω) is a probability measure on (X ,B).

Regular conditional distributions are useful as they allow us to compute the conditional expectations of all
functions of a random variable X simultaneously and to generalize the properties of ordinary expectation in
a more straightforward way [D10]. See Exercises 5.1.14 and 5.1.15 in [D10].

Theorem 11.3 (Existence of regular conditional distribution) Regular conditional distributions ex-
ist if (X ,B) is nice, i.e., there is a 1-1 map ϕ : X → R such that ϕ and ϕ−1 are measurable.
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Some examples of nice spaces are:

1. (X ,B) where X is any topological space and B is the Borel σ-field.

2. (Rn,Bn)

3. The space C[0, 1] of continuous functions on [0, 1] endowed with the sup norm.

4. Polish spaces endowed with the Borel σ-field.

11.2 Bayes’ theorem

Assume (Ω,F , P ) is a probability space. Let X and Θ be random variables such that X : (Ω,F) → (X ,B)
and Θ : (Ω,F)→ (T , τ). Assume that there exists a regular conditional distribution of X given Θ denoted by

µX|Θ(·|θ). Assume that there exists a σ-finite measure ν on (X ,B) such that Pθ � ν. Let fX|Θ(x|θ) =
dµX|Θ
dν .

In fact, let Pθ(B) = µX|Θ(B|θ) for all θ ∈ T and B ∈ B. Then P = {Pθ : θ ∈ T } is called a statistical model
where T is the parameter space, fX|Θ(x|θ) is the likelihood function, and µΘ (distribution of Θ) is the prior.

Theorem 11.4 (Bayes’ theorem) Assume the structure above. Let µX|Θ be the conditional distribution
of Θ given X. Then

1. µΘ|X � µΘ a.e. with respect to the distribution of X.

2.
dµΘ|X
dµΘ

=
fX|Θ(x|θ)∫

T fX|Θ(x|θ)dµΘ(θ)
for all x for which the denominator is neither 0 nor ∞.

Note that Bayes’ theorem is not always applicable. An example where Bayes’ theorem does not apply:
(Example 1.36 in [S95])

Consider the case when the conditional distribution of X given Θ = θ is discrete with Pθ({θ − 1}) =
Pθ({θ+ 1}) = 1

2 . Suppose that Θ has a density fΘ with respect to the Lebesgue measure. The distributions
Pθ are not all absolutely continuous with respect to a single σ-finite measure. It is still possible to verify
that the posterior distribution of Θ given X = x is the discrete distribution with

P (Θ = x− 1|X = x) =
fΘ(x− 1)

fΘ(x− 1) + fΘ(x+ 1)

= 1− P (Θ = x+ 1|X = x)

Note that the posterior is not absolutely continuous with respect to the prior.

11.3 Martingales

Martingales are sequences of dependent random variables. Martingales originated from gambling where you
can adjust the next bet according to previous outcomes. The two main take aways from this section are:

1. Optional sampling theorem

2. Martingale convergence theorem
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Definition 11.5 (Martingale) Let Fn be a filtration, i.e., an increasing sequence of σ-fields. A sequence
of random variables Xn is said to be adapted to Fn if Xn is Fn measurable for all n. If Xn is a sequence
adapted to Fn such that for all n

1. E[|Xn|] <∞

2. E[Xn+1|Fn] = Xn

then Xn is said to be a martingale (with respect to Fn). If = in condition 2 is replaced by ≤ or ≥, then Xn

is said to be a submartingale or a supermartingale, respectively.

Note that for martingales E[Xn] = E[X1]. We give some examples of martingales below.

1. Sum of independent random variables

Let Yn be a sequence of independent random variables such that E[Yn] = 0. Let Fn = σ(Y1, · · · , Yn)
and Xn =

∑n
i=1 Yi. Then Xn is a martingale with respect to Fn. This follows because:

E[Xn+1|Fn] = E

[
n+1∑
i=1

Yi|Fn

]

=

n+1∑
i=1

E[Yi|Fn]

=

n∑
i=1

Yi + E[Yn+1|Fn]

= Xn + E[Yn+1]

= Xn

Note that if E[Yn] ≤ 0 or E[Yn] ≥ 0, then Xn is a submartingale or a supermartingale, respectively.

2. Levy martingale

Let Fn be a filtration and X be a random variable with finite mean. Define Xn = E[X|Fn]. Then Xn

is martingale, sometime called a Levy martingale. This follows from tower property:

E[Xn+1|Fn] = E[E[X|Fn]|Fn]

= E[X|Fn]

= Xn

3. Gambler’s ruin

Consider the example 1 of sequence of independent random variables Yn again. Think of Yn as the
amount a gambler wins on the nth round in a sequence of fair games. Let Y0 be the initial fortune.
Assume it is a known value for simplicity. Suppose that the gambler comes up with a system for
determining how much to bet on the nth round denoted by Wn ≥ 0. Assume that Wn is measurable
with respect to Fn−1 for each n. This condition forces the gambler to choose the bet before knowing
the outcome. Define Zn = Y0 +

∑n
i=1WiYi. Then Zn is a martingale. This is because:

E[Wn+1Yn+1|Fn] = Wn+1E[Yn+1|Fn]

= 0

Note that if started with a submartinagle or a supermartingale, we will end up with a submartingale or
a supermartingale, respectively. In summary, this results says that a gambling system can not change
whether a game is favorable, fair, or unfavorable to a gambler.
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