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24.1 Concentration in High Dimensions

24.1.1 Uniform distribution P on the unit ball Bd = B(0, 1).

The volume of a ball centered at x with radius r:

V ol(B(x, r)) = V ol(B(0, r)) = rdvd ,

where

vd = V ol(B(0, 1)) =
πd/2

Γ(d/2 + 1)
∼ (

2πe

d
)d/2 .

P concentrates near the Boundary of Bd:

P (1− ε ≤ ||X|| ≤ 1) ≥ 1− e1εd .

The intuition is that if any coordinate of x is close to the boundary then x is close to the boundary.

P concentrates around a “SLAB”:

Define
SLAB = {x ∈ Bd : |x1| ≤

c√
d
}.

Note that

P (X ∈ SLAB) = P (|X1| ≤
c√
d

) = P (|uTX| ≤ c√
d

) = P (||uuTX|| ≤ c√
d

) =
V ol(SLAB)

vd

for all u ∈ Sd−1 where Sd−1 = {x ∈ Rd : ||x|| = 1}.

Now consider V ol(SLAB). For each r ∈ (0, 1) the intersection between the hyperplane {x : x1 = r} and Bd
is a d− 1 dimensional ball Bd−1(r) with radius

√
1− r2 centered at (r, 0, ..., 0). So

vol(SLAB) =

∫ c/
√
d

−c/
√
d

V ol(Bd−1(r))dr

= vd−1

∫ c/
√
d

−c/
√
d

(1− r2)(d−1)/2dr
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= vd−1

∫ c

−c
(1− t2/d)(d−1)/2

1√
d
dt .

Hence

P (X ∈ SLAB) =
vd−1
vd

1√
d

∫ c

−c
(1− t2/d)(d−1)/2dt .

vd ∼ ( 2πe
d )d/2 gives

vd−1
vd
∼ 1√

2πe
(

d

d− 1
)d/2
√
d− 1 .

Since ( d
d−1 )d/2 → e1/2 and (1− t2/d)(d−1)/2 → e−t

2/2 by dominating convergence theorem we have

P (X ∈ SLAB)→ 1√
2π

∫ c

−c
e−t

2/2dt = P (|Z| ≤ c) ,

where Z ∼ N(0, 1).

24.1.2 Uniform distribution P on the unit cube [0, 1]d.

Let H be the hyperplane orthogonal to a principal diagonal at the center of the cube:

H = {x ∈ [0, 1]d : xT e =
√
d/2} , e = (

1√
d
,

1√
d
, ...,

1√
d

) .

Then X concentrates around H:

Let
Hc
√
d = {x ∈ [0, 1]d : |xT e−

√
d/2| ≤ c

√
d} .

Note that xT e =
∑
i xi/
√
d. So

P (X ∈ Hc
√
d) = P (x ∈ [0, 1]d : −c

√
d ≤

∑
i

xi/
√
d−
√
d/2 ≤ c

√
d)→ 1

by to Central Limit Theorem ∑
i xi√
d
−
√
d

2
→ N(0,

1

12
) .

24.1.3 Uniform distribution δd−1 on the unit sphere Sd−1 in Rd.

Sd−1 = {x ∈ Rd : ||x|| = 1} .

δd−1 concentrates around any equator E = {x ∈ Sd−1, x1 = 0}:

Let Eε = {x ∈ Sd−1 : |x1| ≤ ε}. We want to show

δd−1(Eε) ≥ 1− 2e−dε
2/2 .

Let Cε be the complement of Eε in the upper hemisphere. Then

δd−1(Cε) =
V ol(cone(Cε))

vd
.
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cone(Cε) is covered in the ball B(x′,
√

1− ε2) where x′ = (ε, 0, ..., 0). Hence

V ol(cone(Cε)) ≤ V ol(B(x′,
√

1− ε2)) = (1− ε2)d/2vd ≤ vde−dε
2/2 ,

which gives δd−1(Cε) ≤ e−dε2/2. Therefore,

δd−1(Eε) = 1− 2δd−1(Cε) ≥ 1− 2e−dε
2/2 .


