
36-755: Advanced Statistical Theory I
Final Exam

December, 7, 2016

Instructions:

• Duration: 1 hour and 20 minutes.

• This is an open-notes, open-books exam. You may use your laptop as long as you are
not connected to the internet.

• There are 7 problems, each worth 25 points. Your score will be capped at 100.

• YOU ARE NOT REQUIRED TO CARRY OUT ALL THE CALCULATIONS. To re-
ceive full credit, it will be enough to set them up correctly and to indicate which
results/tools you are using. You do not need to be concerned with providing exact
constants.

1. Assume that X is a vector in Rd that is sub-Gaussian with parameter σ2 (this means that v>X ∈
SG(σ2) for each v ∈ Rd with ‖v‖ = 1). Compute upper bounds for

P (‖X‖ ≥ t) , t > 0,

and
E [‖X‖] .

Hint: Use the fact that, for any x ∈ Rd, ‖x‖ = max{v∈Rd,‖v‖≤1} v
>x. Also, recall that the δ-covering

number of the Euclidean unit ball in Rd is bounded by
(
1 + 2

δ

)d
.

2. Let Fα,γ(Cmax, L) denotes the class of real-valued functions from [0, 1] such that, for γ ∈ (0, 1], α ∈ N,
Cmax > 0 and L > 0,

sup
x∈[0,1]

|f (j)(x)| ≤ Cmax, j = 0, 1, . . . , α

and
|f (α)(x)− f (α)(y)| ≤ L|x− y|γ ,

where f (k) denotes the kth order derivative of f . It is a well-known fact that, for some C depending
on L, α, γ and Cmax,

logN(δ,Fα,γ(Cmax, L), ‖ · ‖∞) ≤ C
(

1

δ

) 1
α+γ

,

where N(δ,Fα,γ(Cmax, L), ‖ · ‖∞) is the δ-covering number of Fα,γ(Cmax, L) in the distance induced
by the ‖ · ‖∞ norm, where ‖f‖∞ = supx∈[0,1] |f(x)|.
Suppose we observe

Yi = f∗(xi) + εi, i = 1, . . . , n,

where f∗ ∈ Fα,γ(Cmax, L), the εi’s are i.i.d. standard Gaussian and the xi’s are deterministic points
in [0, 1].
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Consider the non-parametric least-squares estimator

f̂ ∈ argminf∈Fα,γ(Cmax,L)

1

n

n∑
i=1

(Yi − f(xi))
2 .

Explain how you can compute, using arguments based on the notion of local Gaussian complexity, a
high-probability bound for

1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2
.

You do not need to carry out all the calculations to determine the bound: it is enough
to set them up.

3. Consider the same settings as in the previous problem. Derive the basic inequality

1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2
≤ 2

n

n∑
i=1

εi(f̂(xi)− f∗(xi)).

Starting from this inequality, explain how an application of the naive 1-step discretization bound will
yield a bound on

E

[
1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2]
.

For the second part of the question, you do not need to carry out all the calculation to
determine the bound: it is enough to set them up.

4. Let X1, . . . , Xn be i.i.d. samples from a probability distribution over the real line with Lebesgue
density f . A standard estimator of f is the kernel density estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

where K : R→ [0,∞) is a kernel function satisfying
∫∞
−∞K(u)du = 1 and h > 0 is fixed bandwidth

parameter. We assess the quality of the estimator f̂h using its L1 distance from f :

‖f̂h − f‖1 :=

∫ ∞
−∞
|f̂h(u)− f(u)|du

Prove that ‖f̂h − f‖1 concentrates well around its mean, i.e. derive an exponential bound for the
probability

P
(∣∣∣‖f̂h − f‖1 − E‖f̂h − f‖1

∣∣∣ ≥ t) ,
for any t > 0.

5. Let X1, . . . , Xn be an i.i.d. sample from a probability distribution on Rd. Let F denote the multi-
variate c.d.f. of P , i.e.

F (x) = P(X ≤ x), x ∈ Rd,
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where, for vectors x and y in Rd, x ≤ y means that xj ≤ yj for all j = 1, . . . , d. Let F̂n denote the
empirical c.d.f. of P , i.e.

F̂n(x) =
1

n

n∑
i=1

1(Xi ≤ x), x ∈ Rd.

Derive a suitable bound for the probability

P
(
‖F − F̂n‖∞ > t

)
, ∀t > 0,

where ‖F − F̂n‖∞ = supx∈Rd |F (x) − F̂n(x)|. You may use the fact that the VC dimension of the
class of sets

A =
{

(−∞, x1]× . . .× (−∞, xd], (x1, . . . , xd) ∈ Rd
}

is d.

Use the above result to derive a 1− α confidence set for F , where α ∈ (0, 1).

6. Let X1, . . . , Xn an i.i.d. sample from a probability distribution P with mean µ and variance σ2.
Suppose we want to estimate µ2 using the U-statistic

Un =

(
n

2

)−1∑
i<j

XiXj .

Show that the asymptotic distribution of
√
n(Un − µ2) is N(0, 4µ2σ2).

What happens when µ = 0?

Using the fact that we can rewrite Un as

1

n− 1

( 1√
n

n∑
i=1

Xi

)2

− 1

n

n∑
i=1

X2
i


show that, when µ = 0, nUn has asymptotically the distribution of (Z2 − 1)σ2, where Z ∼ N(0, 1).

7. (Spiked covariance model). Let X1, . . . , Xn be an i.i.d. sample from a probability distribution on
Rd with mean zero and covariance

Σ = θvv> + Id,

where θ > 0 and ‖v‖ = 1. Then, for all i = 1, . . . , n,

Xi
d
=
√
θξiv + εi

where
d
= denotes equality in distribution, (ξ1, . . . , ξn) are independent zero mean variables with unit

variance and (ε1, . . . , εn) are independent vectors (independent of the ξ’s) with mean zero and common
covariance Id. Assume that the ξ’s and the εi’s are sub-Gaussian variates with parameters at most
1.

We saw in class that in order to analyze the performance of PCA, we need to control ‖Σ̂ − Σ‖op,

where Σ̂ = 1
n

∑n
i=1XiX

>
i .

Show that
‖Σ̂− Σ‖op ≤ T1 + T2 + T3,
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where

T1 = θ

∣∣∣∣∣ 1n
n∑
i=1

ξ2i − 1

∣∣∣∣∣ ,
T2 = 2

√
θ

∥∥∥∥∥ 1

n

n∑
i=1

ξiεi

∥∥∥∥∥
and

T3 =
∥∥∥ 1

n

n∑
i=1

εiε
>
i − Id

∥∥∥
op
.

Explain how to obtain high-probability bounds for each of the terms T1, T2 and T3. (For the term
T2 see the hint in problem 1...)
For the second part of the question, you do not need to carry out any calculations: it
is enough to explain which tools you would use for each term.
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