
36-755, Fall 2016
Homework 1

Due Sep 14.

1. Recall that the KL divergence between two probability measures P and Q on some measurable space
(X ,B) with densities p and q with respect to a common dominating measure µ is

K(P,Q) =

{ ∫
X p(x) log

(
p(x)
q(x)

)
dµ(x) if P << Q

∞ otherwise.

Use Jensen inequality to show that K(P,Q) ≥ 0 with equality if and only if P = Q.

2. Assume that P = {Pθ, θ ∈ Θ} is a parametric model over the sample space (X ,B), such that Pθ << µ
for all θ ∈ Θ, for some σ-finite dominating measure µ. Assume also that all the Pθ’s have the same

support and θ 6= θ′ implies that Pθ 6= Pθ′ . Let Xn = (X1, . . . , Xn)
id∼ Pθ0 for some θ0 ∈ Θ and write

Ln(θ;Xn) =
n∏
i

pθ(Xi),

for the likelihood function at θ ∈ Θ, where pθ is the density of Pθ with respect to µ

Use the law of large numbers to show that, for any θ 6= θ0 in Θ,

lim
n→∞

P (Ln(Xn; θ0) > Ln(Xn; θ)) = 1

The previous result offers an asymptotic justification of why in this case the MLE is a sensible
choice. Hint: express the inequality in term of log-likelihood ratio and show that the ratio converges
in probability to K(Pθ0 , Pθ).

3. (Reading exercise. Not to be graded for correctness, but only for effort)
In this problem you are essentially required to reproduce a proof that can be found in the references
given below. My intention is for you to read up and understand the proof rather than trying to solve
this problem on your own, which would be challenging (though you are welcome to this challenge).
Let X = (X1, . . . , Xd) ∈ Rd be a random vector with covariance matrix Σ such that Xi√

Σi,i
is sub-

Gaussian with parameter ν2, for all i = 1, . . . , d. Assume we observe n i.i.d. copies of X and compute
the empirical covariance matrix Σ̂. Show that, for all i, j ∈ {1, . . . , d},

P
(∣∣∣Σ̂i,j − Σi,j

∣∣∣ > ε
)
≤ C1e

−ε2nC2 ,

for some constants C1 and C2. Conclude that

max
i,j

∣∣∣Σ̂i,j − Σi,j

∣∣∣ = OP

(√
log d

n
.

)

You may want to look these references:

• Lemma 12 in Yuan. M. (2010). High Dimensional Inverse Covariance Matrix Estimation via
Linear Programming, JMLR, 11, 2261-2286.
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• Lemma 1 in Ravikumar, P., Wainwright, M.J., Raskutti, G. and Yu, B. (2011). EJS, 5, 935-980.

• Lemma A.3 in Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance
matrices, teh Annals of Statistics, 36(1), 199-227.

4. (Chebyshev-Cantelli inequality) Prove the following one sided improvement of Chebyshev’s inequality:
for any random variable X with finite variance σ2 and any t > 0,

P (X − E[X] ≥ t) ≤ σ2

σ2 + t2
.

5. From tail bounds to (first) moment bounds.

(a) Suppose that, for all t > 0,
P (|X| ≥ t) ≤ c1e

−c2nta ,

where a ∈ {1, 2}. Show that
E [|X|] ≤ c3n

−1/a

and express c3 as a function of c1 and c2.

(b) (From Hoeffding/Bernstein exponential inequality to high probability bounds). Suppose that,
for all t > 0, and some positive constants a, b, c and a non-negative constant d,

P (|X| ≥ t) ≤ aexp

{
− nbt2

c+ dt

}
.

Then show that, for any δ ∈ (0, 1),

|X| ≤
√

c

nb
ln
a

δ
+

d

nb
ln
a

δ
,

with probability at least 1− δ.

6. Let X be distributed like a Nn(0, In), where In is the n-dimensional identity matrix. Then, ‖X‖2 =∑n
i=1X

2
i ∼ χ2

n. Show that, for any ε ∈ (0, 1)

P
(∣∣‖X‖2 − n∣∣ ≥ nε) ≤ 2e−nε

2/8.

You can use the following fact: the moment generating function of a χ2
n is (1−2λ)−n/2 for all λ < 1/2.

This results says that, in high dimensions, X is concentrated around a sphere of radius
√
n.

7. Suppose that X1, . . . , Xn are such that Xi ∈ SG(σ2
i ), not necessarily independent. Show that∑n

i=1Xi ∈ SG(τ2) and find τ . What if Xi ∈ SE(τ2
i , αi) for all i?

8. (Random Projection and the Johnson-Lindenstruass Lemma).

Suppose we have a (deterministic) vector x in RD and, for ε ∈ (0, 1/2) we would like to find a random
mapping f : RD → Rd, where d is smaller than D, such that

(1− ε)‖f(x)‖2 ≤ ‖x‖2 ≤ (1 + ε)‖f(x)‖2

with high probability. One way is to construct a d ×D matrix A with iid entries from the N(0, 1)
distribution and then take

f(x) =
1√
d
Ax, x ∈ RD.

You can think of f as being a random projection from a high-dimensional space RD into the smaller
space Rd.
Show that
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(a) ‖x‖2 = E
[
‖f(x)‖2

]
.

(b) For each ε ∈ (0, 1/2)

P
( ∣∣‖f(x)‖2 − ‖x‖2

∣∣ > ε‖x‖2
)
< 2 exp

{
−d/4(ε2 − ε3)

}
Proceed as follows: show that the squared norm of

√
df(x)
‖x‖ is equal in distribution to the sum of d

squared standard normals, and therefore has a χ2
d distribution.

In your subsequent derivation, you may use the following facts:

(a) The mfg of a χ2
1 at any λ < 1/2 is (1− 2λ)−1/2 .

(b) For any ε ∈ (0, 1/2), setting λ = ε
2(1+ε) < 1/2, we get

e−2(1+ε)λ

1− 2λ
= (1 + ε)e−ε < e−1/2(ε2−ε3)

ans setting λ = ε
2(1−ε) < 1/2 we get

e2(1−ε)λ

1 + 2λ
= (1− ε)eε < e−1/2(ε2−ε3)

Using the above result, show that, if we are given n deterministic vectors (x1, . . . , xn) in RD and
we compute their projections f(x1), . . . , f(xn) in Rd, we are guaranteed that the all the pairwise
squared distances between the projected points are distorted by at most a factor of ε ∈ (0, 1/2) with

probability at least 1− δ if d ≥ 4(log(1/δ)+2 log(n))
ε2−ε3 . That is,

‖xi − xj‖2(1− ε) ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖2(1 + ε), ∀i 6= j,

with probability at least 1− δ.
What is striking about this result is that the dimension D of the original space does not appear
anywhere in these bounds!

This is an instance of what is also known as the Johnson-Lindenstruass Lemma, which loosely speak-
ing, states that a random projection of n points from a high-dimensional space into a d dimensional
space preserves the pairwise squared distances up to a multiplicative factor of ε with high probability
if d is of order logn

ε2
, independently of the dimension of the original space.

Notice that instead of using independent N(0, 1) variables to populate A, we could have used any sub-
Gaussian distribution.See the requirement that ε ∈ (0, 1/2) can be weakened). See D. Achlioptas,
Database friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of Com-
puter and System Sciences 66 (2003) 671687.
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