36-755, Fall 2016 Homework 3

Due Wed Oct 5 by 5:00pm in Jisu's mailbox

- 1. A random matrix A of dimension $n \times m$ is sub-Gaussian with parameter σ^2 , written as $A \in SG_{m,n}(\sigma^2)$, when $y^{\top}Ax$ is $SG(\sigma^2)$ for any $y \in \mathbb{S}^{n-1}$ and $x \in \mathbb{S}^{m-1}$. You may assume that $\mathbb{E}[A] = 0$ (or otherwise replace A by $A - \mathbb{E}[A]$).
 - (a) Suppose that the entries of A are independent variables that are $SG(\sigma^2)$. Show that $A \in SG_{m,n}(\sigma^2)$.
 - (b) Let $A \in SG_{n,m}(\sigma^2)$ and recall that the operator norm of A is

$$||A||_{\rm op} = \max_{x \in \mathbb{R}^m, x \neq 0} \frac{||Ax||}{||x||} = \max_{y \in \mathbb{S}^{n-1}, x \in \mathbb{S}^{m-1}} y^\top Ax.$$

Show that, for some C > 0,

$$\mathbb{E}\left[\|A\|_{\mathrm{op}}\right] \le C\left(\sqrt{n} + \sqrt{m}\right).$$

(c) Find a concentration inequality for $||A||_{op}$.

Hint: work with a 1/4 *net for* \mathbb{S}^{n-1} *and a* 1/4 *net for* \mathbb{S}^{m-1} .

2. Median and sample quantiles.

(a) Suppose that (X_1, \ldots, X_n) is an i.i.d. sample from a distribution P (if you like, you may assume P to be absolutely continuous). Let $X_{(1)} \leq X_{(2)} < \ldots < X_{(n)}$ be the order statistics and set $\alpha \in (0, 1)$. Determine a $1 - \alpha$ confidence interval for the median of P of the form

$$\left(X_{(k_1)}, X_{(k_2)}\right)$$

for some choice of $k_1 < k_2$. Determine k_1 and k_2 by relating this problem to a Bin(n, 1/2) distribution and use concentration.

(b) Consider the same setting as the previous exercise and let F be the c.d.f. of P and $p \in (0, 1)$. The *p*th quantile and *p*-th sample quantile are, respectively,

$$\xi_p = \inf\{x \colon F(x) \ge p\}$$

and

$$\hat{\xi}_p = \inf\{x \colon F_n(x) \ge p\},\$$

res[ectively, where F_n is the sample c.d.f. (i.e. $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$). Show that, for any $\epsilon > 0$,

$$\mathbb{P}\left(|\hat{\xi}_p - \xi_p| > \epsilon\right) \le 2\exp\left\{-2n\delta_{\epsilon}^2\right\}$$

where $\delta_{\epsilon} = \min \{F(x_p + \epsilon) - p, p - F(\xi_p - \epsilon)\}$. Write, for instance, $\mathbb{P}(\hat{\xi}_p > \xi_p + \epsilon) = \mathbb{P}(p > F_n(\xi_p + \epsilon))$. Then, notice that $F_n(x)$ is a sum of *i.i.d.* Bernoulli and use Hoeffding yet again... 3. Consider the linear regression model

$$Y = X\theta^* + \epsilon$$

where $\theta \in \mathbb{R}^d$, X is fixed and $\epsilon \in \mathbb{R}^n$ consists of independent zero-mean variables with finite variance. The ridge estimator is defined as

$$\hat{\theta}_{\text{ridge}} = \hat{\theta}_{\text{ridge}}(\lambda) = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{n} \|Y - X\theta\|^2 + \lambda \|\theta\|^2 \right\},$$

where $\lambda > 0$.

- (a) Show that $\hat{\theta}_{ridge}$ is uniquely defined for any $\lambda > 0$ and find a closed-form expression.
- (b) Compute the bias of $\hat{\theta}_{ridge}$.
- 4. Let (\mathcal{X}, d) be a metric space and, for $\delta > 0$, let $N(\delta)$ and $M(\delta)$ denote the δ -covering and δ -packing number, respectively. Show that

$$M(2\delta) \le N(\delta) \le M(\delta).$$