
36-755, Fall 2016
Homework 4

Due Wed Oct 19 by 5:00pm in Jisu’s mailbox

1. A sparse oracle inequality for the lasso. Consider the following set-up, as described in class.
We observe n pairs (Y1, x1), . . . , (Yn, xn), where each xi is a fixed vector in Rd and

Yi = f(xi) + εi, i = 1, . . . , n,

with ε1, . . . , εn independent variables in SG(σ2). We have a dictionary (f1, . . . , fM ) of M functions
from Rd into R and would like to estimate f using a sparse linear combination of such functions.
More precisely, for θ = (θ1, . . . , θM ) ∈ RM , let fθ =

∑M
j=1 θjfj . Then, we will estimate f with fθ̂

where θ̂ is a lasso solution:

θ̂ ∈ argminθ∈RM

1

2n

n∑
i=1

(Yi − fθ(xi))2 + λn‖θ‖1,

for some λn ≥ 0. To study the performance of this estimator, we will compared fθ̂ to the sparse
oracle estimator fθ∗ , where

θ∗ ∈ argminθ∈RM ,‖θ‖0≤k

n∑
i=1

(f(xi)− fθ(xi))2, (1)

and 0 < k < M is a fixed constant.

We will make the following assumption: let Φ be the n × M matrix with entries, Φi,j = fj(xi),
and assume that, for some κ > 0, Φ satisfies the RE(3, κ) condition with respect to all non-empty
subsets S of {1, . . . ,M} of cardinality no larger than k. Show that, if λn ≥ 2

n‖Φ
>ε‖∞, then, for any

α ∈ (0, 1),

MSE(fθ̂) ≤ inf
θ∈Rd,‖θ‖0≤k

{
1 + α

1− α
MSE(fθ) +

18

α(1− α)κ
‖θ‖0λ2n

}
,

where, for θ ∈ RM , MSE(fθ) = 1
n

∑n
i=1(fθ(xi)− f(xi))

2.

Since this proof is similar to the proof of the fast rate for the lasso, you may use facts proved in class
and do not need to re-derive them.

Hint: this is an extension of the proof of the fast rates for the lasso. Here are some suggestions:

• Consider any θ ∈ RM with ‖θ‖0 ≤ k and start with the inequality

1

2n

[
n∑
i=1

(Yi − fθ̂(xi))
2 −

n∑
i=1

(Yi − fθ(xi))2
]
≤ λn(‖θ‖1 − ‖θ̂‖1).

• Now substitute Yi = f(xi) + εi for all i and get a basic inequality.

• Continue following the proof of the fast rates for the lasso, using the RE condition.

• At some point you will need to use the variational inequality

2xy = inf
γ>0

(
x2

γ
+ y2γ

)
to get that 2xy ≤ 2

αx
2 + α

2 y
2, for α ∈ (0, 1).
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• You will also need to use the inequality (x− y)2 ≤ 2x2 + 2y2.

2. Inference after model selection. Suppose that we observe n independent random variables
(X1, . . . , Xn) where Xi ∼ N(µi, 1) for all i. The means µ1, . . . , µn are unknown but we suspect
that most of them are zero and some are large in absolute value. We first perform a naive model
selection procedure by computing the random set of indexes

Î = {i : |Xi| > 1},

corresponding to the variables that presumably have the largest means in absolute value. This is the
model selection part. Then, for any one i ∈ Î (assumed non-empty), we test the null hypothesis that
µi = 0 at the significance level of α = 0.05. This the inference part. We decide to ignore the selection
step, and use the test that rejects if |Xi| > zα/2, the 1 − α/2 quantile of a standard normal. What
is the problem with this choice? If I correctly take into consideration the selection step, what would
be a better test?

3. Hard thresholding in the sub-gaussian many means problem. Suppose we observe the vector
X = (X1, . . . , Xd) ∈ Rd, where

X = θ∗ + ε,

with θ∗ ∈ Rd unknown and ε ∈ SGd(σ2). We would like to estimate θ∗ using the hard thresholding
estimator θ̂ = (θ̂1, . . . , θ̂d) with parameter τ > 0, given by:

θ̂i =

{
Xi if |Xi| > τ
0 if |Xi| ≤ τ.

This estimator either keeps or kills each coordinate of X.

For δ ∈ (0, 1), set
τ = 2σ

√
2 log(2d/δ).

Notice that P (maxi |εi| > τ/2) ≤ δ (If this surprises you, refresh your memory on maximal inequalities
and check out HW2!).

(a) Prove that the hard-thresholding estimator is the solution the optimization problem

min
θ∈Rd
‖X − θ‖2 + τ2‖θ‖0.

(b) Prove that if ‖θ∗‖0 = k, with probability at least 1− δ,

‖θ̂ − θ∗‖2 ≤ Cσ2k log(2d/δ),

for some universal constant C > 0. Hint: show that, for each i = 1, . . . , d

|θ̂i − θ∗i | ≤ C ′min{|θ∗i |, τ}

for some C ′ > 0, with probability at least 1− δ.
(c) Compare with the oracle estimator θ̂or, with coordinates given by

θ̂ori =

{
Xi if i ∈ supp(θ∗)
0 otherwise.

for i = 1, . . . , d.
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(d) Show that if mini∈supp(θ∗) |θi| > 3
2τ , then, with probability at least 1− δ,

supp(θ̂) = supp(θ∗).

How does θ̂ compare now to the oracle estimator?

4. Reading Exercise, graded for effort, not correctness.

The following paper outlines a general strategy, called primal dual witness construction, for showing
model selection consistency for the lasso. It an be extended to other penalized likelihood procedures.

• Wainwright, M. (2009). Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery
Using `1-Constrained Quadratic Programming (Lasso), IEEE TRANSACTIONS ON INFOR-
MATION THEORY, VOL. 55, NO. 5, 2183–2202.

Reproduce the proof of Theorem 1. Notice that the incoherence condition, which is necessary for the
result, is a very strong assumption.

5. In earlier works on the lasso, people have used a even stronger assumptions than the restricted
eigenvalue property. Here is one. Suppose that the design matrix X is such that, for some integer
k > 0,

max
i,j

∣∣∣X>i Xj

n
− 1(i = j)

∣∣∣ ≤ 1

14k

where Xi is the ith column of X, i = 1, . . . , d. Think about what that means. Also, see Proposition
7.1 in the book.

(a) Show that this condition implies that, for any subset S of {1, . . . , d} of cardinality no larger
than k < d and any ∆ ∈ Rd with ‖∆Sc‖1 ≤ 3‖∆S‖1,

‖∆S‖2 ≤
2

n
‖X∆‖2. (2)

(b) This is not quite the RE(3, 1/2) condition given in class. First of all, it holds not just for a fixed
S ⊂ {1, . . . , d} but for all subsets S of cardinality no larger than k. Secondly, in the definition
from class the left hand side on (2) should be ‖∆‖2 instead. Nonetheless, show that a simple
modification of the last few steps of the proof of the fast rates for the lasso covered in class
will give slightly worse rate (up to constants) using the condition (2). The rate in this case is
worse because the rate depends on the L0-norm of the true regression parameters instead of its
squared root. You don’t have to reproduce the whole proof, just the last few steps. Hint: you
will need the inequality ‖∆‖2 ≤ ‖∆‖1, valid for all vectors ∆.
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