36-755, Fall 2016 Homework 5

Due Mon Oct 31 by 5:00pm in Jisu's mailbox

1. Matrix Algebra Problems. We have used these facts in class. Now it is time to prove them.

- (a) Problem 8.3 (You may assume the result of Problem 8.1 as given).
- (b) Recall the spiked covariance model: $\Sigma = \theta v v^{\top} + I_d$, where $\theta > 0$ and $v \in \mathbb{S}^{d-1}$. Let \hat{v} be another unit vector in \mathbb{S}^{d-1} . Show that

$$v^{\top} \Sigma v - \hat{v}^{\top} \Sigma \hat{v} = \theta \sin^2(\angle(v, \hat{v}))$$

where $\angle(v, \hat{v}) = \cos^{-1}(|v^{\top}\hat{v}|)$

(c) Show that

$$\left\| \hat{v}\hat{v}^{\top} - vv^{\top} \right\|_{F}^{2} = 2\sin^{2}(\angle(v,\hat{v})),$$

where, for a matrix $A = (A_{i,j}), ||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2}.$

2. Reading exercise. Skim through the article "Models as Approximations A Conspiracy of Random Regressors and Model Deviations Against Classical Inference in Regression", available here: http://www-stat.wharton.upenn.edu/~buja/PAPERS/Buja_et_al_A_Conspiracy-rev1.pdf

(a) Prove equations (7) and (8) in the paper. That is, prove the following. Let X be a zero mean

(a) Prove equations (7) and (8) in the paper. That is, prove the following. Let X be a zero mean d-dimensional vector and Y a random variable. The joint distribution of (X, Y) is P. Let $\Sigma = \mathbb{E}[XX^{\top}]$ and $\alpha = \mathbb{E}[Y \cdot X]$. Show that $\beta = \Sigma^{-1}\alpha$ is the solution to

$$\operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}\left[(Y - X^\top \beta)^2 \right]$$

and to

$$\operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}\left[(\mu(X) - X^\top \beta)^2 \right],$$

where $\mu(X) = \mathbb{E}[Y|X]$.

- (b) Did this article contain results that were surprising to you? Think about fitting a linear regression model to a model where $\mu(X)$ is non-lineat: what happens? Write no more than 2 paragraphs.
- 3. Exercise 4.3.
- 4. Massart's finite class Lemma Let \mathcal{A} be a finite subset of \mathbb{R}^n and let $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ be a vector of i.i.d. Rademacher variables. Show that

$$\mathbb{E}\left[\frac{1}{n}\sup_{a\in\mathcal{A}}a^{\top}\epsilon\right] \leq D\frac{\sqrt{2\log|\mathcal{A}|}}{n}$$

where $D = \max_{a \in \mathcal{A}} ||a||$. Use this result to prove Lemma 4.1 of Chapter 4. (In proving both claims it will be OK to get different constants).

5. Another symmetrization inequality

Let \mathcal{A} be a countable class of sets in \mathbb{R}^d and $X = (X_1, \ldots, X_n) \stackrel{i.i.d.}{\sim} P$. Let P_n^X be the empirical measure corresponding to the sample X. Let $Y = (Y_1, \ldots, Y_n) \stackrel{i.i.d.}{\sim} P$ be a ghost sample, independent of Y, and P_n^Y the corresponding empirical measure. Prove that

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n^X(A)-P(A)|>\epsilon\right)\leq 2\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n^X(A)-P_n^Y(A)|>\epsilon/2\right),$$

for $n\epsilon^2 \ge 2$.

Proceed as follows:

(a) Show that, if $n\epsilon^2 \ge 2$, for all $A \in \mathcal{A}$,

$$\mathbb{P}\left(|P_n^X(A) - P(A)| > \epsilon\right) \le 1/2$$

(b) Prove the following claim: let $(Z_k, k = 1, 2, ...)$ be a sequence (finite or infinite) of random variables and $(Z'_k, k = 1, 2, ...)$ be a ghost sequence with the same distribution and independent of it. Suppose that $\mathbb{P}(|Z_k| > \epsilon/2) = \mathbb{P}(|Z'_k| > \epsilon/2) \le 1/2$ for all k. Then

$$\mathbb{P}\left(\sup_{k} |Z_{k}| > \epsilon\right) \le 2\mathbb{P}\left(\sup_{k} |Z_{k} - Z_{k}'| > \epsilon/2\right).$$

Hint: Define the events: $A_1 = \{|Z_i| > \epsilon\}$ and for $k \ge 2$,

$$A_k = \{ |Z_1| \le \epsilon, \dots, |Z_{k-1}| \le \epsilon, |Z_k| > \epsilon \}.$$

Then,

$$\frac{1}{2}\mathbb{P}\left(\max_{k}|Z_{k}| > \epsilon\right) = \frac{1}{2}\sum_{k}\mathbb{P}(A_{k}).$$

Proceed...

6. Exercise 4.10.

7. Exercise 4.13.