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16.1 Recap

Last time we looked at the combinatorial properties of the VC-dimension. We looked at some classes of
subsets in Rd that have finite VC-dimension. There are many other classes that don’t have finite VC-
dimension.

Examples:

• In R2 the VC-dimension of polygons is ∞
• The VC-dimension of convex sets are infinite (shown in homework 5)
• In Rd the VC-dimension of a polytope (high dimensional version of a polygon) with an unbounded

number of facets is also infinite
– Any subset of points can be picked out by a polytope

Note: our definition of VC-dimension matches that of the book A Probabilistic Theory of Pattern Recogni-
tion, but there are other places it is defined differently. We define it to be the largest n such that SA(n) = 2n,
but it can also be defined as the smallest n such that SA(n) < 2n. SA(n) = 2n means that every possible
combination (2n) of points can be picked out. In our definition of VC-dimension, we want the largest n such
that all combinations of X1, · · · , Xn can be picked out.

The derivation of the VC (Vapnik Chervnonkis) inequality in the book is non-traditional. Other references
use the traditional derivation.

16.2 VC dimension continued

16.2.1 Traditional derivation

If we have a class of subsets in Rd, then

P
(

sup
A∈A
|Pn(A)− P (A)| ≥ ε

)
≤ c1SA(n)e−c2nε

2

for c1, c2 > 0
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SA(n) = max
xn
i

|A(xni )| → {xn1 ∩A,A ∈ A}

Proof:

Step 1: Symmetrization by ghost sample

Assume nε2 ≥ 2

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ 2P

(
sup
A∈A
|Pn(A)− P ′n(A)| > ε/2

)

Where P ′n is the empirical distribution based on the ghost sample (we never get to see) (X ′1, · · · , X ′n) which
are iid and independent of (X1, · · · , Xn)

Step 2: Symmetrization by random signs

Note: because we are dealing with the Rademacher complexity, we have randomness in X and ε. Using
Rademacher is useful because we can condition on the X and make them independent of the rademacher
complexity.

≤ 2P

(
sup
A∈A

1

n
|
n∑
i=1

εi1(Ai ∈ A)| > ε/4

)
ε1 · · · εn

iid∼ Rademacher, |= x1 · · ·xn

|= x′1 · · ·x′n

= 2ExPε,x

(
sup
A∈A

1

n
|
n∑
i=1

εifA(x)| > ε/4 | x1 · · ·xn
)

rewrite, utilize usefulness of Rademacher

Now, we fix (xi · · ·xn) = xn1 , where fA = 1(xi ∈ A). Because we have the supremum in there still, we can’t
use hoeffding. We need just one A to use hoeffding. But, we can bound.

P

(
sup
A∈A

1

n
|
n∑
i=1

εifA(x)| > ε/4 | Xn
1 = xn1 )

)

≤SA(n) sup
A∈A

Pε

(
1

n
|
n∑
i=1

εifA(x)− Eε[εif(xi)]| > ε/4

)
︸ ︷︷ ︸

(*)

Step 3: Use hoeffding inequality to bound the above probability, (*)

The terms are uniformly bounded so we can use hoeffding.

. 8SA(n)e−nε
2/32 SA(n) ≤ (n+ 1)v if A has VC-dim v
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16.2.2 Sharpening of the VC-inequality

16.2.2.1 Inequality for relative deviation

As we just saw, the VC inequality depends on the hoeffding inequality. We know hoeffding isn’t always the
sharpest. So, going from hoeffding to Bernstein is a way to improve the inequality when the variances are
small.

We might want to distinguish between when P(A) is small or large. For the binomial case, if the probabilities
are very small or very large, hoeffding is bad. Currently, the VC inequality will not give separate behavior
for different values of P(A). So, we divide by

√
Pn(A) and

√
P(A).

P

(
sup
A∈A
|Pn(A)− P (A)√

Pn(A)
| ≥ ε

)
≤ 4SA(2n)e−nε

2/4 ⇐⇒

P

(
sup
A∈A
|P (A)− Pn(A)√

P (A)
| ≥ ε

)
≤ 4SA(2n)e−nε

2/4

Then, ∀t ∈ (0, 1],

P (∃A ∈ A st P (A) ≥ t,PPn(A) ≤ (1− t)P (A)) ≤ 4SA(2n)e−nε
2/4

An important conservancy of relative deviation is

P (A) ≤ Pn(A) + 2

√
Pn(A) logSA(2n) + log(4/δ)

n
+

4 logSA(2n) + log(4/δ)

n

Simultaneously over all A ∈ A and for any δ ∈ (0, 1) this follows from the following inequality

A ≤ B + C
√
A =⇒ A ≤ B + C2 +

√
BC for A,B,C > 0

We think about the relative deviation as a better VC inequality, when the probabilities are very small.

We want to extend this to functions, because currently it only applies to binary f. What we’ve done so far
is good for probability, but we want to make our findings broader. We have VC for classes of sets only, or,
equivalently, for classes of functions that are binary.

So, if we let F be a collection of real valued functions from Rd into [0, 1] and we set Pf = E[f(x)] and
Pnf = 1

n

∑
f(xi). Note that we can replace [0, 1] with any bounded set.

Proposition: supf∈F |Pnf − Pf | = ||Pn − P ||F ≤ sup f∈F
t∈[0,1]

1
n

∑n
i=1[1(f(xi) > t)− P(f(xi) > t)]

Proof:

We use the fact that if x ≥ 0, x =
∫∞
0

1(x ≥ t)dt

For any f treat supf∈F |Pnf − Pf | = ||Pn − P ||F as a random variable.

If Z ≥ 0,E[Z] =
∫∞
0

1(x ≥ η)dη

Then, let A = {{x : f(x) > t}, f ∈ F, t ∈ [0, 1]} so that ||Pn − P ||F ≤ supA∈A |Pn(A)− P (A)|
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We can use VC theory if A has a finite VC-dimension and therefore we can say that F is a VC-class.

In reality and practice, this isn’t the best tool. It’s hard to find the VC dimension of function classes. There
are more manageable tools when dealing with function classes. In dealing with function classes, we need
to use covering numbers and metric entropies. Reminder: the δ-covering number of a metric space is the
smallest number of points such that balls centered there will cover the space.

On the space F use this metric: d1,pn(f, g) = 1
n

∑n
i |f(xi)−g(xi)| where x1 · · ·xn

iid∼ P random metric. This
is a random metric because it depends on our sample.

Let N(F , εδ , P2n)→ ε
δ covering number of F with respect to d1, P2n. Here, N is a random covering.

Then,

P(||Pn − P ||F > ε) ≤ E[N(F , ε
δ
, d1, 2n)]e−nε

2/32 for n ≥ ε2/2

Instead of using d1,pn we can use d∞(f, g) = supx |f(x)− g(x)| because d∞(f, g) is often easier to compute.

Then we replace the random covering with an appropriate deterministic (not random) L∞ covering of F .
This is a weak result, but it is very useful. You will prove it in the homework (it is very simple, just use
Hoeffding).

16.3 Talagrand inequality for empirical processes

What is the sharpest concentration inequality that man has ever known? The talagrand inequality. The
tools to prove this, even the simplest proof, is still very complicated.

Given a class of functions on Rd into [0, 1] (or taking value into a bounded set) then

P
(
||Pn − P ||F ≤ E[||Pn − P ||F ]−

√
2t

n
+ 2E[||Pn − P ||F ]− t

n
+ σ2(F )

)
≤ e−t

Where σ2(F) = supf V [f(x)]. We need to bound E[||Pn − P ||F ].

Remark: Since we are taking the sup over infinite classes, we are assuming [||Pn − P ||F ] is measurable.
In general, we don’t know this.

The fact that we assume separability is not a stretch. We say set F is separable if there exists a dense
subset F0 ⊂ F such that ∀f ∈ F ,∃fn ⊂ F0 such that limn fn(x) = f(x) ∀x. Even the French papers avoid
measurability issues by assuming a countable, dense subset.

Main idea: assume a countable, dense subset.

Useful links

http://www.szit.bme.hu/~gyorfi/pbook.pdf

https://en.wikipedia.org/wiki/Polytope

http://www.szit.bme.hu/~gyorfi/pbook.pdf
https://en.wikipedia.org/wiki/Polytope
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