36-755: Advanced Statistical Theory Fall 2016

Lecture 20: November 7

Lecturer: Alessandro Rinaldo Scribes: Alden Green

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Chaining and Orlicz Processes

Definition 20.1 (χ_q Norm) The χ_q norm of a random variable X with mean zero is

$$
||X||_{\chi_q} = \inf \{ \lambda > 0 : \mathbb{E} \left[\chi_q \frac{|X|}{\lambda} \right] \le 1 \}
$$
\n(20.1)

where $\chi_q(x) = e^{x^q} - 1$ for $q \in [1, 2]$. If no such λ exists, $||X||_{\chi_q} = \infty$.

Note that

$$
\mathbb{P}(|X| > t) = \mathbb{P}\left(\chi_q(\frac{|X|}{||X||_{\chi_q}}) > \chi_q \frac{t}{||X||_{\chi_q}}\right) \qquad \text{because } \chi_q \text{ increasing} \qquad (20.2)
$$

$$
\leq \frac{1}{\chi_q(\frac{t}{||X||_{\chi_q}})}
$$
 by Markov (20.3)

We will show on a later homework assignment that this implies

$$
\mathbb{P}(|X| > t) \le c_q \exp\{-c_2 t^q\} \tag{20.4}
$$

which shows that we are simply defining a generalized notion of concentration, with Sub-Gaussian $(q = 2)$ and Sub-Exponential $(q = 1)$ tail decay as two special cases.

Further note that if $X_1, ..., X_n$ iid w/ $||X_i||_{X_q} = \sigma^2$ then:

$$
\mathbb{E}\left[\max_{i=1,\dots,n} X_i\right] \le \sigma \chi_q^{-1}(n) \tag{20.5}
$$

Remark 1 If $\chi(u) = u^p, p \ge 1$, then

$$
||X||_{\chi} = (\mathbb{E}[|X|^p])^{\frac{1}{p}}
$$
\n(20.6)

More generally, any function $\chi : \mathbb{R}_+ \to \mathbb{R}_+$ strictly increasing, convex and with $\chi(0) = 0$ would yield a norm $||.||_x$ on the space of zero-mean RV's. We call these **Orlicz norms**.

We will focus on $\chi_q(x) = e^{x^q} - 1$ from here on in.

Definition 20.2 (χ_q process) Let $\{\mathbb{T}, \rho\}$ be a metric space. A zero-mean stochastic process $\{X_{\theta} : \theta \in \mathbb{T}\}\$ is a χ_q process if

$$
||X_{\theta} - X_{\theta'}||_{\chi_q} \le \rho(\theta, \theta')
$$
\n
$$
\forall \theta, \theta' \in \mathbb{T}
$$
\n(20.7)

As an example, the Gaussian process $G_{\theta} = \{(\theta, w), \theta \in \mathbb{T}\}, w \sim \mathcal{N}(0, I)$ is also a χ_2 process, with $\rho(\theta, \theta') =$ $2||\theta - \theta'||.$

Definition 20.3 (Generalized Dudley Integral) The generalized Dudley integral is

$$
\mathcal{J}_q(D) = \int_0^D \chi_q^{-1} \left(\mathcal{N}(u, \mathbb{T}, \rho) \right) du \tag{20.8}
$$

where $D = \sup_{\theta, \theta'} (\theta, \theta')$ is the diameter of \mathbb{T} , $\mathcal{N}(u, \mathbb{T}, \rho)$ is the u-covering number of \mathbb{T} , and $\chi_q^{-1}(y) =$ $[\log(1+y)]^{\frac{1}{q}}$.

Our main result for today is bounding the supremum of a χ_q process by the generalized Dudley integral.

Theorem 20.4 Let $\{X_{\theta}, \theta \in \mathbb{T}\}\$ be a χ_q process with respect to ρ . Then, $\exists C > 0$ such that

$$
\mathbb{P}\left(\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\geq C\left[\mathcal{J}_q(D)+\delta\right]\right)\leq 2\exp\left\{-(\frac{\delta}{D})^q\right\}\tag{20.9}
$$

We will need the following lemma to prove this theorem.

Lemma 20.5 Let $Y_1, ..., Y_N$ be non-negative random variables s.t. $||Y||_{X_q} \leq 1$. Define, for a measurable set A,

$$
\mathbb{E}_A(Y) := \int_A Y(\omega) dP(\omega) \qquad \text{and} \qquad (20.10)
$$

$$
\mathbb{E}(Y|A) := \frac{\mathbb{E}_A(Y)}{P(A)}\tag{20.11}
$$

Then, for every measurable A,

$$
\mathbb{E}_A(Y_i) \le P(A)\chi_q^{-1}\left(\frac{1}{P(A)}\right) \qquad \qquad \text{and} \qquad (20.12)
$$

$$
\mathbb{E}_A(\max_{i=1,\dots,N} Y_i) \le P(A)\chi_q^{-1}(\frac{N}{P(A)})\tag{20.13}
$$

Proof: (of Lemma) For the first statement, notice that $\mathbb{E}_A(\chi_q(Y)) = \mathbb{E}_A\left(\chi_q(Y)\frac{||Y||_{\chi_q(Y)}}{||Y||_{\chi_q(Y)}}\right)$ $\left|\left|Y\right|\right|_{\chi_q}$ $\Big) \leq \mathbb{E}_A \left(\frac{\chi_q(Y)}{\|Y\|_{\infty}} \right)$ $\left|\left|Y\right|\right|_{Xq}$ ≤ $||Y||_{\chi_q} = 1$. Therefore,

$$
\mathbb{E}_A(Y) = P(A)\mathbb{E}(Y|A) \tag{20.14}
$$

$$
= P(A) \mathbb{E}(\chi_q^{-1}(\chi_q(Y)) | A)
$$
 since $Y \ge 0$ (20.15)

$$
\le P(A) \chi^{-1} \mathbb{E}(\chi_q(Y) | A)
$$
 by the convexity of χ^{-1} (20.16)

$$
\leq P(A)\chi_q^{-1}\mathbb{E}(\chi_q(Y)|A) \qquad \text{by the concavity of } \chi_q^{-1} \qquad (20.16)
$$

= $P(A)\chi_q^{-1}(\frac{\mathbb{E}_A(\chi_q(Y))}{P(A)})$ (20.17)

$$
\leq P(A)\chi_q^{-1}(\frac{1}{P(A)})
$$
\n
$$
\leq P(A)\chi_q^{-1}(\frac{1}{P(A)})
$$
\n
$$
\text{since } \mathbb{E}_A(\chi_q(Y)) \leq 1 \tag{20.18}
$$

(20.19)

For the second statement, begin by taking $A_i = \{ \omega : Y_i(\omega) = \max_{i=1,...,N} Y_i \}.$ Then,

$$
\int_{A} \max_{i=1,\dots,N} Y_i(\omega) dP(\omega) = \sum_{i=1}^{N} \int_{A_i} Y_i(\omega) dP(\omega)
$$
\n(20.20)

$$
\leq \sum_{i=1}^{N} P(A_i) \chi_q^{-1}(\frac{1}{P(A_i)}) \tag{20.21}
$$

$$
=\sum_{i=1}^{N} P(A) \frac{P(A_i)}{P(A)} \chi_q^{-1}(\frac{1}{P(A_i)})
$$
\n(20.22)

$$
\leq P(A)\chi_q^{-1}(\frac{N}{P(A)})
$$
 Jensen's inequality for concave functions (20.23)

With this lemma in hand, we can turn to proving our theorem.

Proof: (of Theorem) To begin with, we want to show that

$$
\mathbb{E}_A \left[|X_{\theta} - X_{\theta'}| \right] \le 8P(A)\mathcal{J}_q(D) \tag{20.24}
$$

We will use a chaining argument very similar to the one used for Dudley's (not generalized) method. Let U_m be a $D2^{-m}$ minimal covering of $\mathbb T$ such that $|U_m| \le N_m = \mathcal N(D2^{-m}, \mathbb T, \rho)$. Let $\pi_m : \mathbb T \to U_m$ be defined as $\pi_m(\theta) = \underset{\theta, \theta' \in U_m}{argmin}$ $\rho(\theta, \theta')$. Then,

$$
\mathbb{E}_{A}\left[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\right] \leq 2\sum_{m=1}^{\infty}\mathbb{E}_{A}\left[\max_{\gamma\in U_{m}}|X_{\gamma}-X_{\pi_{m-1}(\gamma)}|\right]
$$
(20.25)

and for each $\gamma \in U_m$,

$$
||X_{\gamma} - X_{\pi_{m-1}(\gamma)}||_{\chi_q} \le \rho(\gamma, \pi_{m-1}(\gamma)) \le D2^{-(m-1)}
$$
\n(20.26)

so by our lemma,

$$
\mathbb{E}_A \left[\max_{\gamma \in U_m} \left| X_{\gamma} - X_{\pi_{m-1}(\gamma)} \right| \right] \le P(A) D 2^{-(m-1)} \chi_q \left(\frac{N_m}{P(A)} \right) \to \tag{20.27}
$$

$$
\mathbb{E}_A\left[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\right] \le 2P(A)\sum_{m=1}^{\infty}D2^{-(m-1)}\chi_q^{-1}\left(\frac{N_m}{P(A)}\right) \tag{20.28}
$$

$$
\leq cP(A)\int_0^D \chi_q^{-1}\left(\frac{\mathcal{N}(u,\mathbb{T},\rho)}{P(A)}\right)du\tag{20.29}
$$

Now that we've bounded \mathbb{E}_A $\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|$ 1 , we need only to bound the (positive) deviation of $\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|$ from its mean. We will need a slight variant of Markov's inequality. Take some positive random variable Z, and let A be the event that $Z > t$. Then,

$$
\mathbb{P}(A) = \mathbb{P}(Z > t) \le \frac{\mathbb{E}_A(Z)}{t}
$$
\n(20.30)

We also have that $\chi_q^{-1}(st) \leq c \left[\chi_q^{-1}(s) + \chi_q^{-1}(t) \right]$. With these in mind, we proceed. From our previous work, we have that

$$
\mathbb{E}_A \left[\sup_{\theta, \theta' \in \mathbb{T}} |X_{\theta} - X_{\theta'}| \right] \le 8 \mathcal{J}_q(D) \tag{20.31}
$$

Let $Z = \sup_{\theta, \theta' \in \mathbb{T}} |X_{\theta} - X_{\theta'}|$ and choose $A = \{Z \ge t\}$. Then

$$
P(A) \le \frac{\mathbb{E}_A(Z)}{t} \tag{20.32}
$$

$$
\leq 8 \frac{\mathbb{P}(Z > t)}{t} \int_0^D \chi_q^{-1}\left(\frac{\mathcal{N}(u, \mathbb{T}, \rho)}{\mathbb{P}(Z > t)}\right) du \to \tag{20.33}
$$

$$
t \le 8c \left\{ \mathcal{J}_q(D) + D\chi_q^{-1}\left(\frac{1}{\mathbb{P}(Z>t)}\right) \right\} \tag{20.34}
$$

Finally, set $\delta>0$ and let $t=8c(\mathcal{J}_q(D)+\delta),$ and we obtain,

$$
\mathbb{P}\left(Z > 8c(\mathcal{J}_q(D) + \delta)\right) \le \frac{1}{\chi_q(\frac{\delta}{D})}\tag{20.35}
$$

Getting from this to the final result will be a homework question.

 \blacksquare