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20.1 Chaining and Orlicz Processes

Definition 20.1 (χq Norm) The χq norm of a random variable X with mean zero is

||X||χq = inf{λ > 0 : E
[
χq
|X|
λ

]
≤ 1} (20.1)

where χq(x) = ex
q − 1 for q ∈ [1, 2]. If no such λ exists, ||X||χq =∞.

Note that

P(|X| > t) = P
(
χq(

|X|
||X||χq

) > χq
t

||X||χq

)
because χq increasing (20.2)

≤ 1

χq(
t

||X||χq
)

by Markov (20.3)

We will show on a later homework assignment that this implies

P(|X| > t) ≤ cq exp{−c2tq} (20.4)

which shows that we are simply defining a generalized notion of concentration, with Sub-Gaussian (q = 2)
and Sub-Exponential (q = 1) tail decay as two special cases.

Further note that if X1, ..., Xn iid w/ ||Xi||χq = σ2 then:

E
[

max
i=1,...,n

Xi

]
≤ σχ−1q (n) (20.5)

Remark 1 If χ(u) = up, p ≥ 1, then
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||X||χ = (E [|X|p])
1
p (20.6)

More generally, any function χ : R+ → R+ strictly increasing, convex and with χ(0) = 0 would yield a norm
||.||χ on the space of zero-mean RV’s. We call these Orlicz norms.

We will focus on χq(x) = ex
q − 1 from here on in.

Definition 20.2 (χq process) Let {T, ρ} be a metric space. A zero-mean stochastic process {Xθ : θ ∈ T}
is a χq process if

||Xθ −Xθ′ ||χq ≤ ρ(θ, θ′) ∀θ, θ′ ∈ T (20.7)

As an example, the Gaussian process Gθ = {〈θ, w〉, θ ∈ T}, w ∼ N (0, I) is also a χ2 process, with ρ(θ, θ′) =
2||θ − θ′||.

Definition 20.3 (Generalized Dudley Integral) The generalized Dudley integral is

Jq(D) =

∫ D

0

χ−1q (N (u,T, ρ)) du (20.8)

where D = sup
θ,θ′

ρ(θ, θ′) is the diameter of T, N (u,T, ρ) is the u-covering number of T, and χ−1q (y) =

[log(1 + y)]
1
q .

Our main result for today is bounding the supremum of a χq process by the generalized Dudley integral.

Theorem 20.4 Let {Xθ, θ ∈ T} be a χq process with respect to ρ. Then, ∃C > 0 such that

P

(
sup
θ,θ′∈T

|Xθ −Xθ′ | ≥ C [Jq(D) + δ]

)
≤ 2 exp{−(

δ

D
)q} (20.9)

We will need the following lemma to prove this theorem.

Lemma 20.5 Let Y1, ..., YN be non-negative random variables s.t. ||Y ||χq ≤ 1. Define, for a measurable set
A,

EA(Y ) :=

∫
A

Y (ω)dP (ω) and (20.10)

E(Y |A) :=
EA(Y )

P (A)
(20.11)
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Then, for every measurable A,

EA(Yi) ≤ P (A)χ−1q (
1

P (A)
) and (20.12)

EA( max
i=1,...,N

Yi) ≤ P (A)χ−1q (
N

P (A)
) (20.13)

Proof: (of Lemma) For the first statement, notice that EA (χq(Y )) = EA
(
χq(Y )

||Y ||χq
||Y ||χq

)
≤ EA

(
χq(Y )
||Y ||χq

)
≤

||Y ||χq = 1. Therefore,

EA(Y ) = P (A)E(Y |A) (20.14)

= P (A)E(χ−1q (χq(Y ))|A) since Y ≥ 0 (20.15)

≤ P (A)χ−1q E(χq(Y )|A) by the concavity of χ−1q (20.16)

= P (A)χ−1q (
EA(χq(Y ))

P (A)
) (20.17)

≤ P (A)χ−1q (
1

P (A)
) since EA (χq(Y )) ≤ 1 (20.18)

(20.19)

For the second statement, begin by taking Ai = {ω : Yi(ω) = max
i=1,...,N

Yi}. Then,

∫
A

max
i=1,...,N

Yi(ω)dP (ω) =

N∑
i=1

∫
Ai

Yi(ω)dP (ω) (20.20)

≤
N∑
i=1

P (Ai)χ
−1
q (

1

P (Ai)
) (20.21)

=

N∑
i=1

P (A)
P (Ai)

P (A)
χ−1q (

1

P (Ai)
) (20.22)

≤ P (A)χ−1q (
N

P (A)
) Jensen’s inequality for concave functions (20.23)

With this lemma in hand, we can turn to proving our theorem.

Proof: (of Theorem) To begin with, we want to show that

EA

[
|Xθ −Xθ′ |

θ,θ′∈T

]
≤ 8P (A)Jq(D) (20.24)

We will use a chaining argument very similar to the one used for Dudley’s (not generalized) method. Let
Um be a D2−m minimal covering of T such that |Um| ≤ Nm = N (D2−m,T, ρ). Let πm : T→ Um be defined
as πm(θ) = argmin

θ,θ′∈Um
ρ(θ, θ′). Then,
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EA

[
sup
θ,θ′∈T

|Xθ −Xθ′ |

]
≤ 2

∞∑
m=1

EA
[

max
γ∈Um

∣∣Xγ −Xπm−1(γ)

∣∣] (20.25)

and for each γ ∈ Um,

||Xγ −Xπm−1(γ)||χq ≤ ρ(γ, πm−1(γ)) ≤ D2−(m−1) (20.26)

so by our lemma,

EA
[

max
γ∈Um

∣∣Xγ −Xπm−1(γ)

∣∣] ≤ P (A)D2−(m−1)χq

(
Nm
P (A)

)
→ (20.27)

EA

[
sup
θ,θ′∈T

|Xθ −Xθ′ |

]
≤ 2P (A)

∞∑
m=1

D2−(m−1)χ−1q

(
Nm
P (A)

)
(20.28)

≤ cP (A)

∫ D

0

χ−1q

(
N (u,T, ρ)

P (A)

)
du (20.29)

Now that we’ve bounded EA

[
sup
θ,θ′∈T

|Xθ −Xθ′ |

]
, we need only to bound the (positive) deviation of sup

θ,θ′∈T
|Xθ −Xθ′ |

from its mean. We will need a slight variant of Markov’s inequality. Take some positive random variable Z,
and let A be the event that Z > t. Then,

P(A) = P(Z > t) ≤ EA(Z)

t
(20.30)

We also have that χ−1q (st) ≤ c
[
χ−1q (s) + χ−1q (t)

]
. With these in mind, we proceed. From our previous work,

we have that

EA

[
sup
θ,θ′∈T

|Xθ −Xθ′ |

]
≤ 8Jq(D) (20.31)

Let Z = sup
θ,θ′∈T

|Xθ −Xθ′ | and choose A = {Z ≥ t}. Then

P (A) ≤ EA(Z)

t
(20.32)

≤ 8
P(Z > t)

t

∫ D

0

χ−1q

(
N (u,T, ρ)

P(Z > t)

)
du→ (20.33)

t ≤ 8c

{
Jq(D) +Dχ−1q (

1

P(Z > t)
)

}
(20.34)
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Finally, set δ > 0 and let t = 8c(Jq(D) + δ), and we obtain,

P (Z > 8c(Jq(D) + δ)) ≤ 1

χq(
δ
D )

(20.35)

Getting from this to the final result will be a homework question.


