36-755: Advanced Statistical Theory 1

Fall 2016

Lecture 1: August 31

Lecturer: Alessandro Rinaldo Scribes: Jaehyeok Shin

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Tail bounds and Concentration inequality

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$. We know

$$\frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_n \xrightarrow{p} \mu \iff \bar{X}_n = \mu + o_p(1)$$

$$\frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu) \Longrightarrow Z \sim N(0, 1) \iff \bar{X}_n = \mu + O_p\left(\frac{1}{\sqrt{n}}\right)$$

By the central limit theorem,

$$\lim_{n \leftarrow \infty} \mathbb{P}\left(\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu\right) > t\right) = \mathbb{P}(Z > t) \le \frac{1}{2} e^{-t^2/2} \text{ for } t > 0,$$

If n is large enough,

$$\lim_{n \leftarrow \infty} \mathbb{P}\left(\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu\right) > t\right) \le C_1 \exp\left\{-t^2 C_2\right\}, \quad C_1, C_2 > 0$$

In fact, this is true for a large class of random variables for all finite n!

1.2 Concentration phenomenon

Let P be uniform distribution over $B_d = \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Then, if $X \sim P, \epsilon > 0$,

$$\mathbb{P}\left(\|X\|<1-\epsilon\right) = \frac{v_d(1-\epsilon)^d}{v_d} \leq e^{-\epsilon d} \longrightarrow 0 \ \text{ as } \ d \longrightarrow \infty$$

where $v_d := Vol(B_d)$. Similar phenomenon happens for the Normal distribution.

Back to concentration

Let (X_1, \ldots, X_n) be independent. Let $Z = f(X_1, \ldots, X_n)$. If f does not depend too much on its individual coordinates, Z concentrates well around its mean $\mathbb{E}[[Z]]$. We will focus

$$f(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$$

1.3 Markov Inequality

If $X \geq 0$,

$$\begin{split} \mathbb{P}(X \geq t) &\leq \frac{\mathbb{E}[X]}{t}, \quad t > 0 \\ \mathbb{P}(|X - \mathbb{E}[X]| \geq t) &\leq \frac{\sigma^2}{t^2}, \quad \sigma^2 = \mathbb{V}[X] \end{split}$$

To bound $\mathbb{P}(|X - \mu| \ge t)$, $\mu = \mathbb{E}[X]$, we could observe

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}[X - \mu|^k]}{t^k}, \quad k = 1, 2, \dots$$
$$\Longrightarrow \mathbb{P}(|X - \mu| \ge t) \le \min_{k=1, 2, \dots} \frac{\mathbb{E}[X - \mu|^k]}{t^k}$$

This is a good bound but we need to know all moments of X which requires strong and unrealistic assumptions on X.

1.4 Chernoff Bound

Let $\psi_X(\lambda) := \log \left(\mathbb{E}[e^{\lambda(X-\mu)}] \right)$. Assume $\psi_X(\lambda)$ exists for $\forall \lambda \in [0,b)$, $0 < b \le \infty$. Then, for t > 0, $0 \le \lambda < b$,

$$\mathbb{P}(X - \mu \ge t) \le \mathbb{P}\left(e^{\lambda(x-\mu)} \ge e^{\lambda t}\right)$$

$$\le e^{-\lambda t} \mathbb{E}\left[e^{\lambda(x-\mu)}\right], \text{ (by the Markov inequality)}$$

$$= \exp\left\{\psi_X(\lambda) - \lambda t\right\}$$

which implies $\mathbb{P}(X - \mu \ge t) \le \exp\{-\psi_X^*(t)\}$ where $\psi_X^*(t) = \sup_{\lambda \in [0,b)} \{\lambda t - \psi_X(\lambda)\}$

Example

Let $X \sim N(\mu, \sigma^2)$. We know $\mathbb{E}[e^{\lambda X}] = \exp\left\{\mu\lambda + \frac{\sigma^2\lambda^2}{2}\right\}$, $\forall \lambda \in \mathbb{R}$. So,

$$\sup_{\lambda \geq 0} \left\{ \lambda t - \log \mathbb{E} \left[e^{\lambda (X - \mu)} \right] \right\} = \sup_{\lambda \geq 0} \left\{ \lambda t - \frac{\sigma^2 \lambda^2}{2} \right\} = \frac{t^2}{2\sigma^2}$$

By using Chernoff, t > 0,

$$\mathbb{P}\left(|X - \mu| \ge t\right) \le 2\exp\left\{-\frac{t^2}{2\sigma^2}\right\}$$

How good is this bound?

$$\sup_{t \ge 0} \left\{ \mathbb{P}(Z \ge t) \exp\left\{\frac{t^2}{2}\right\} \right\} = \frac{1}{2}$$

In Normal case, Chernoff method gave a bound

$$C_1 \exp\left\{-t^2 C_2\right\}, \quad C_1, C_2 > 0 \quad \text{(Gaussian-like tail behavior)}$$

Lecture 1: August 31

1.5 Sub-Gaussian Random Variables

Definition 1.1 A random variable X with finite $\mu = \mathbb{E}[X]$ is said to be sub-gaussian with parameter σ^2 , $X \in SG(\sigma^2)$, $\sigma > 0$ if

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le \exp\left\{\frac{\lambda^2 \sigma^2}{2}\right\}, \quad \forall \lambda \in \mathbb{R}$$

Note that if X is sub-gaussian, -X is sub-gaussian.

Result

If $X \in SG(\sigma^2)$

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left\{-\frac{t^2}{2\sigma^2}\right\}, \quad \forall t > 0$$

Properties of $SG(\sigma^2)$

1. $X \in SG(\sigma^2) \Longrightarrow \mathbb{V}[X] \leq \sigma^2$. (by Taylor expansion of $\mathbb{E}\left[e^{\lambda(X-\mu)}\right]$)

2.
$$a \le X - \mu \le b$$
 a.s. $\Longrightarrow X \in SG\left(\left(\frac{b-a}{2}\right)^2\right)$

Proof: Without loss of generality, assume $\mu = 0$. We need to show

$$\psi_X(\lambda) \le \frac{(b-a)^2 \lambda^2}{8}$$

First, note that $\mathbb{V}[X] \leq \left(\frac{b-a}{2}\right)^2$ since $\left|X - \frac{a+b}{2}\right| \leq \frac{b-a}{2}$ a.s. For any random variable X such that $a \leq X \leq b$ a.s., let Z be a random variable such that $\frac{dP_Z}{dP_X}(z) = e^{\lambda z}e^{-\psi_X(\lambda)}$. Then $a \leq Z \leq b$ a.s. and $\mathbb{V}[Z] = \psi_X''(\lambda)$. So $\psi_X''(\lambda) \leq \left(\frac{b-a}{2}\right)^2$. Now,

$$\psi_X(0) = \log 1 = 0$$

$$\psi_X'(0) = \mathbb{E}[X] = 0$$

$$\psi_X(\lambda) = \int_0^{\lambda} \psi_X'(\lambda') d\lambda' = \int_0^{\lambda} \int_0^{\lambda'} \psi_X''(\lambda'') d\lambda'' d\lambda'$$

$$\leq \frac{\lambda^2}{2} \frac{(b-a)^2}{4} = \frac{\lambda^2 (b-a)^2}{8}$$

3. $X \in SG(\sigma^2) \Longrightarrow \alpha X \in SG(\alpha^2 \sigma^2), \quad \alpha \in \mathbb{R}$

4.
$$X \in SG(\sigma^2)$$
 and $Y \in SG(\tau^2) \Longrightarrow X + Y \in SG\left((\sigma + \tau)^2\right) (\sigma, \tau > 0)$. If $X \perp\!\!\!\perp Y$, $X + Y \in SG(\sigma^2 + \tau^2)$

Proof: of the first case

1-4 Lecture 1: August 31

Without loss of generality, assume $\mathbb{E}[X] = \mathbb{E}[X] = 0$

$$\mathbb{E}\left[e^{\lambda(X+Y)}\right] = \mathbb{E}e^{\lambda X}e^{\lambda Y}$$

$$\leq_{H\ddot{o}lder} \left(\mathbb{E}e^{\lambda pX}\right)^{1/p} \left(\mathbb{E}e^{\lambda qY}\right)^{1/q}, \text{ where } \frac{1}{p} + \frac{1}{q} = 1$$

$$\leq \exp\left\{\frac{\lambda^2\sigma^2p^2}{2}\frac{1}{p} + \frac{\lambda^2\tau^2q^2}{2}\frac{1}{q}\right\}$$

$$= \exp\left\{\frac{\lambda^2}{2}(p\sigma^2 + q\tau^2)\right\}$$

$$= \exp\left\{\frac{\lambda^2}{2}(\sigma + \tau)^2\right\} \text{ by setting } p = \frac{\tau}{\sigma} + 1$$

1.6 Hoeffding Inequality

Let X_1, \ldots, X_n be independent and $X_i \in SG(\sigma_i^2)$, $i = 1, \ldots, n$ Then,

$$\mathbb{P}\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le \exp\left\{-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right\}, \quad t > 0$$

where $\mu_i = \mathbb{E}[X_i], \ i = 1, \dots, n$ In particular, if $\sigma_i = \sigma, \ \forall i$

$$\mathbb{P}\left(|\bar{X}_n - \bar{\mu}| \ge t\right) \le 2\exp\left\{-\frac{t^2n}{2\sigma^2}\right\}$$

where $\bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mu_i$

Example $X_i \sim Bernoulli(p_i), i = 1, ..., n$

By Hoeffding,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \frac{1}{n}\sum_{i=1}^{n}p_{i}\right| \ge t\right) \le 2\exp\{-2t^{2}n\}$$

 \implies With probability at least $1 - \delta$, $\delta \in (0, 1)$

$$\left|\bar{X}_n - \bar{p}_n\right| \leq \sqrt{\frac{1}{2n}\log\frac{2}{\delta}} \quad \text{ (set } 2\exp\{-2t^2n\} = \delta \text{ and solve it for } t)$$

Remark

- Sharper results can be obtained by using Chernoff method.
- In this case, there are multiplicative bounds.

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge (1+\epsilon)\mu\right) \le e^{-\epsilon^2 \mu/3}$$

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \le (1-\epsilon)\mu\right) \le e^{-\epsilon^2 \mu/2}$$

where $\mu = \sum_{i=1}^{n} p_i$, $\epsilon \in (0,1)$. They are useful if $p_i \longrightarrow 0$

Lecture 1: August 31

Hoeffding vs Multiplicative bounds $(p_i = p, \ \forall i = 1, \dots, n \)$

$$\mathbb{P}\left(p - \bar{X}_n \ge t\right) \le e^{-2t^2 n} \Longleftrightarrow \mathbb{P}\left(p - \bar{X}_n \ge \sqrt{\frac{1}{2n} \log \frac{1}{\delta}}\right) \le \delta \qquad \text{(Hoeffding)}$$

$$\mathbb{P}\left(p - \bar{X}_n \ge \epsilon p\right) \le e^{-n\epsilon^2/2} \Longleftrightarrow \mathbb{P}\left(p - \bar{X}_n \ge \sqrt{\frac{2p}{n} \log \frac{1}{\delta}}\right) \le \delta \qquad \text{(Multiplicative)}$$

Multiplicative bound is better if $p \leq \frac{1}{4}$, and much better if $p_i \longrightarrow 0$ as $n \longrightarrow \infty$