36-755: Advanced Statistical Theory 1 Fall 2016

Lecture 1: August 31
Lecturer: Alessandro Rinaldo Scribes: Jaehyeok Shin

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1.1 Tail bounds and Concentration inequality

Let X1,..., X, " (u,0%). We know

1 « _ _
ﬁi Xi=X, L p= X, =p+o,(1)
=1

VU (%)) = Z~ NO1) = Ko =40, Qﬁ)

By the central limit theorem,

N

lim IP’( ()_(n—,u) >t) =P(Z>1t)< et /2 for t > 0,
o

DN =

n<—0o0

If n is large enough,

N<—00

lim P(\éﬁ (Xn—u) >t> < C’lexp{—tQC'g}, 01702 >0

In fact, this is true for a large class of random variables for all finite n!

1.2 Concentration phenomenon

Let P be uniform distribution over By = {# € R?: ||z| < 1}. Then, if X ~ P,e > 0,

vg(1 — €)?

P(IX) <1-¢) = 20—

<e 50 as d— o

where vq := Vol(Bg). Similar phenomenon happens for the Normal distribution.
Back to concentration

Let (X1,...,X,) be independent. Let Z = f(Xy,...,X,). If f does not depend too much on its individual
coordinates, Z concentrates well around its mean E[[Z]. We will focus

1 n
flxy,...,xn) = Ezlxl
im
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1.3 Markov Inequality

If X >0,
E
P(th)g%, t>0
o
P(X ~E[X]| > 1) < %, o?=V[X]
To bound P(|X — u| > t), p = E[X], we could observe
E[X — ul"]
. EX — ]
= P(X —pl2t) < min ——x

This is a good bound but we need to know all moments of X which requires strong and unrealistic assumptions
on X.

1.4 Chernoff Bound

Let ¢ x(\) :=log (E[e’\(x_”)]). Assume 1 x () exists for VA € [0,0) ,0 < b < oo. Then, fort > 0,0 < A < b,
P(X —p>t) <P (eW—W > e’\t>
< e ME {eA(“”*”)} , (by the Markov inequality)
=exp {¢x(A) — At}

which implies P(X — p > t) < exp {—9% (t)} where ¢% (t) = sup {M —¢¥x(\)}
A€[0,b)

Example

Let X ~ N(u,0?). We know E[e**] = exp {u/\ + "22)‘2 } , YA eR. So,

22 £2
sup{)\t—logE {eA(X*”)}} :sup{)\t— g } ==
A>0 0 20

By using Chernoff, ¢ > 0,

How good is this bound?
t2 1
sup {P(Z > t)exp{}} =—
>0 2 2

In Normal case, Chernoff method gave a bound

C1 exp {4202} , C1,Cs >0 (Gaussian-like tail behavior)
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1.5 Sub-Gaussian Random Variables

Definition 1.1 A random wvariable X with finite p = E[X] is said to be sub-gaussian with parameter o2,

X € SG(0?), o>0if

E {ek(X—u)} < exp { No®

}, VAeR

Note that if X is sub-gaussian, —X is sub-gaussian.
Result
If X € SG(0?)

2

t
P(X —p|>t) <2exps—=— ¢, VE>0
202

Properties of SG(o?)
1. X € SG(0?) = V[X] < 0% (by Taylor expansion of E [e*X~#)])

2. agx—ugba-s-=>X65G<(b%“)2>

Proof: Without loss of generality, assume p = 0. We need to show

ux(y < CZOX

First, note that V[X] < (b_T“)2 since !X — ”T'H” < b_T‘l a.s. For any random variable X such that

a <X <ba.s., let Z be a random variable such that %(z) =eMe ¥xN) Thena < Z < b a.s. and
V[Z] = % (\). So ¥4 (M) < (252)°. Now,

¥x(0) =logl =0

Py (0) =E[X] =0

/ wX d)\/ / ’(/} )\// )\”d}\/

A2 b—a A2(b—a)?
<5

4 3

3. X € SG(0?) = aX € SG(a?0?), a€R

4. X € SG(0?) and Y € SG(7%) = X +Y € SG ((c 4+ 7)?) (0,7 > 0).
If XY, X+Y €SG(o?+ 7%

Proof: of the first case
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Without loss of generality, assume E[X] =E[X] =0

E {6/\(X+Y)} — B XY

SHblder (Ee)\pX)l/p (]Ee)\qy)l/q R where ]1? + 1 =1

q
No?p? 1 A272¢% 1
<en{ S5 )

1.6 Hoeffding Inequality

Let X1,..., X, be independent and X; € SG(c?), i=1,...,n Then,

P <Z(Xz — 1) Zt> SeXP{W}, t>0

=1

where u; = E[X;], ¢=1,...,n In particular, if 0; = 0, Vi

where i = 23" | 4,

By Hoeffding,

n

Example X; ~ Bernoulli(p;), i=1,...,n
1 1<
IR

P ( !
i=1 i=1

= With probability at least 1 — 4§, § € (0,1)

_ 1 2
| Xn — pn| < \/% log 5 (set 2exp{—2t*n} = ¢ and solve it for t)

> t) < 2exp{—2t*n}

Remark

e Sharper results can be obtained by using Chernoff method.

e In this case, there are multiplicative bounds.

P <Z X; > 1+ e)ﬂ) < e n/3
i=1

P <Z X, <(1- e)u) < emCn/?
i=1

where =" | p;, €€ (0,1). They are useful if p; — 0
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Hoeffding vs Multiplicative bounds (p; =p, Vi=1,...,n)

_ _ 1 1
P (p - X, > t) < e s P <p - X, > o log 6) <6 (Hoeffding)
n
v —ne?/2 v 2p 1 R .
P (p - X, > ep) <e = P(p-X, >4/ —log 5 <¢ (Multiplicative)
n

Multiplicative bound is better if p < %, and much better if p, — 0 as n — o
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