36-755: Advanced Statistical Theory I

Lecture 18: November 2

Lecturer: Alessandro Rinaldo

Scribe: YJ Choe

Fall 2016

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

18.1 Dudley's integral entropy bound

In this lecture, we introduce an integral bound that gives one of the sharpest bounds on the expected supremum of sub-Gaussian processes. This integral bound can be useful for computing concentration bounds on infinite-dimensional function spaces with known metric entropy.

Theorem 18.1 (Dudley's integral entropy bound). Let $\{X_{\theta} : \theta \in \mathbb{T}\}$ be a zero-mean sub-Gaussian process with metric d on the set \mathbb{T} . Suppose that

$$D = \sup_{\theta, \theta' \in \mathbb{T}} d(\theta, \theta') < \infty$$

Then, for any $\delta \in [0, D]$,

$$\mathbb{E}\left[\sup_{\theta,\theta'\in\mathbb{T}} \left(X_{\theta} - X_{\theta'}\right)\right] \le 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\le\delta}} \left(X_{\gamma} - X_{\gamma'}\right)\right] + 16\mathcal{J}\left(\delta/4,\mathbb{T}\right)$$

where

$$\mathcal{J}(\delta, \mathbb{T}) = \int_{\delta}^{D} \sqrt{\log N(\mu, \mathbb{T})} d\mu$$

is the δ -truncated Dudley's entropy integral.

Remark 18.2. (1) Constants in the upper bound can be improved.

(2) The same result holds for $|X_{\theta} - X_{\theta'}|$ and $|X_{\gamma} - X_{\gamma'}|$, up to constants.

(3) Typically, we let $\delta \to 0$ to use the following simplified bound:

$$\mathbb{E}\left[\sup_{\theta,\theta'\in\mathbb{T}} \left(X_{\theta} - X_{\theta'}\right)\right] \le C \int_0^D \sqrt{\log N(\mu,\mathbb{T})} d\mu$$

for some C > 0.

(4) The theorem also gives a bound on $\mathbb{E}[\sup_{\theta \in \mathbb{T}} X_{\theta}]$, which is bounded from above by $\mathbb{E}[\sup_{\theta, \theta' \in \mathbb{T}} (X_{\theta} - X_{\theta'})]$.

Proof: We start with the 1-step discretization bound:

$$\sup_{\theta,\theta\in\mathbb{T}} \left(X_{\theta} - X_{\theta'}\right) \le 2 \sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\le\delta}} \left(X_{\gamma} - X_{\gamma'}\right) + 2 \max_{i,=1,\dots,N} |X_{\theta_i} - X_{\theta_1}|$$

where N is the δ -covering number of \mathbb{T} and $\mathbb{U} = \{\theta_1, \ldots, \theta_N\} \subseteq \mathbb{T}$ is a minimal δ -covering of \mathbb{T} . Taking expectations give the first term in the upper bound, so we have to bound the second term in expectation.

For each $m = 1, 2, \ldots$, define $\epsilon_m = D \cdot 2^{-m}$ and let $\mathbb{U}_m \subseteq \mathbb{T}$ be a minimal ϵ_m -covering of \mathbb{U} from \mathbb{T} . Then, since \mathbb{U} is finite and ϵ_m is decreasing, we can choose L to be the smallest integer such that $|\mathbb{U}_L| = N$. In such case, ϵ_L must be sufficiently small¹, so we can choose $\mathbb{U}_L = \mathbb{U}$.

Note that the choice of L implies that the norm balls $B(\theta_i, \epsilon_L)$ do not intersect for any $i = 1, \ldots, N$, i.e.

$$d(\theta, \theta') > \epsilon_L = D \cdot 2^{-L} \qquad \forall \theta, \theta' \in \mathbb{U}$$

Since L is the *smallest* such integer, we know that there exists some $\theta, \theta' \in \mathbb{U}$ such that $d(\theta, \theta') \leq \epsilon_{L-1} = D \cdot 2^{-(L-1)}$ (otherwise, L-1 will be the smallest integer instead). At the same time, we know that \mathbb{U} is a δ -covering of \mathbb{T} , so that for such θ, θ' ,

$$\delta < d(\theta, \theta') \le D \cdot 2^{-(L-1)}$$

We will use this relationship between δ and L towards the end of the proof.

For each $m = 1, \ldots, L$, define the mapping $\pi_m : \mathbb{U} \to \mathbb{U}_m$ as

$$\pi_m(\theta) = \operatorname*{argmin}_{\beta \in \mathbb{U}_m} d(\theta, \beta)$$

i.e. the best approximation of $\theta \in \mathbb{U}$ from \mathbb{U}_m .

Next, for each $\theta \in \mathbb{U}$, let $(\gamma_1, \ldots, \gamma_L)$ be a sequence of points in \mathbb{T} such that $\gamma_L = \theta$ and

$$\gamma_m = \pi_m(\gamma_{m+1})$$

for m = 1, ..., L - 1. We call this sequence a *chain*, as we have the *chaining relation*

$$X_{\theta} - X_{\gamma_1} = X_{\gamma_L} - X_{\gamma_1} = \sum_{m=2}^{L} (X_{\gamma_m} - X_{\gamma_{m-1}})$$

By triangle inequality,

$$|X_{\theta} - X_{\gamma_1}| \le \sum_{m=2}^{L} |X_{\gamma_m} - X_{\gamma_{m-1}}|$$

Given another $\theta' \in \mathbb{U}$, we can construct another chain γ' such that

$$\left|X_{\theta'} - X_{\gamma_1'}\right| \le \sum_{m=2}^{L} \left|X_{\gamma_m'} - X_{\gamma_{m-1}'}\right|$$

Then, for any $\theta, \theta' \in \mathbb{U}$,

$$\begin{aligned} X_{\theta} - X_{\theta'} &| \le \left| X_{\gamma_1} - X_{\gamma'_1} \right| + \left| X_{\theta} - X_{\gamma_1} \right| + \left| X_{\theta'} - X_{\gamma'_1} \right| \\ &= \left| X_{\gamma_1} - X_{\gamma'_1} \right| + \sum_{m=2}^{L} \left| X_{\gamma_m} - X_{\gamma_{m-1}} \right| + \sum_{m=2}^{L} \left| X_{\gamma'_m} - X_{\gamma'_{m-1}} \right| \end{aligned}$$

 ${}^{1}\epsilon_{L}$ must be small enough such that $d(\theta_{i}, \theta_{i'}) > \epsilon_{L}$ for all $i \neq i'$.

and each of the two alternating sums is bounded by

$$\sum_{m=2}^{L} \max_{\beta \in \mathbb{U}_m} \left| X_{\beta} - X_{\pi_{m-1}(\beta)} \right|$$

Then, taking maximum over all $\theta, \theta' \in \mathbb{U}$ and expectations, we get

$$\mathbb{E}\left[\max_{\theta,\theta'\in\mathbb{U}}\left|X_{\theta}-X_{\tilde{\theta}}\right|\right] \leq \mathbb{E}\left[\max_{\gamma,\gamma'\in\mathbb{U}_{1}}\left|X_{\gamma}-X_{\tilde{\gamma}}\right|\right] + 2\sum_{m=2}^{L}\mathbb{E}\left[\max_{\beta\in\mathbb{U}_{m}}\left|X_{\beta}-X_{\pi_{m-1}(\beta)}\right|\right]$$

To bound the first term, notice that

$$X_{\gamma} - X_{\gamma'} \in SG\left(d^2(\gamma, \gamma')\right)$$

Since $d(\gamma, \tilde{\gamma}) \leq D = \sup_{\theta, \theta' \in \mathbb{T}} d(\theta, \theta') < \infty$ by assumption, we get

$$X_{\gamma} - X_{\gamma'} \in SG\left(D^2\right)$$

Then, by the metric entropy bound for sub-Gaussian random variables, we get

$$\mathbb{E}\left[\max_{\gamma,\gamma'\in\mathbb{U}_1}|X_{\gamma}-X_{\gamma'}|\right] \le 2D\sqrt{\log N(D/2,\mathbb{T})}$$

where we recall that \mathbb{U}_1 is a minimal ϵ_1 -covering of $\mathbb{U} \subseteq \mathbb{T}$ and $\epsilon_1 = D \cdot 2^{-1} = D/2$, so that $|\mathbb{U}_1| \leq N(D/2, \mathbb{T})$ by definition.

To bound the second term, for m = 2, ..., L, we can give an analogous metric entropy bound. First, we have that

$$\max_{\beta \in \mathbb{U}_m} d(\beta, \pi_{m-1}(\beta)) \le D \cdot 2^{-(m-1)}$$

since π_{m-1} is the best approximation from \mathbb{U}_{m-1} . Also,

$$|\mathbb{U}_m| \le N(D \cdot 2^{-m}, \mathbb{T})$$

because \mathbb{U}_m is a minimal ϵ_m -covering of \mathbb{U} where $\epsilon_m = D \cdot 2^{-m}$. Thus, we get

$$\mathbb{E}\left[\max_{\beta \in \mathbb{U}_m} |X_{\beta} - X_{\pi_{m-1}(\beta)}|\right] \le 2 \cdot D \cdot 2^{-(m-1)} \sqrt{\log N(D \cdot 2^{-m}, \mathbb{T})}$$

for m = 2, ..., L.

Combining these bounds on the two terms, we have

$$\mathbb{E}\left[\max_{\theta,\theta'\in\mathbb{U}}\left(X_{\theta}-X_{\theta'}\right)\right] \leq 4\sum_{m=1}^{L}\left[D\cdot 2^{-(m-1)}\sqrt{\log N(D\cdot 2^{-m},\mathbb{T})}\right]$$

This already is a good bound, but we can also bound it with an integral, using the fact that $\mu \mapsto \sqrt{\log N(\mu, \mathbb{T})}$ is a non-increasing function on [0, D]. Because the function is non-increasing, the summation is a lower

Riemann approximation of the integral of $\mu \mapsto \sqrt{\log N(\mu, \mathbb{T})}$. That is,

$$\mathbb{E}\left[\max_{\theta,\theta'\in\mathbb{U}} \left(X_{\theta} - X_{\theta'}\right)\right] \leq 4\sum_{m=1}^{L} \left[D \cdot 2^{-(m-1)}\sqrt{\log N(D \cdot 2^{-m}, \mathbb{T})}\right]$$
$$\leq 4\sum_{m=1}^{L} \left[2\int_{D \cdot 2^{-(m+1)}}^{D \cdot 2^{-m}}\sqrt{\log N(\mu, \mathbb{T})}d\mu\right]$$
$$\leq 8\int_{D/2^{L+1}}^{D/2}\sqrt{\log N(\mu, \mathbb{T})}d\mu$$
$$\leq 8\int_{\delta/4}^{D}\sqrt{\log N(\mu, \mathbb{T})}d\mu$$
$$= 8\mathcal{J}(\delta/4, \mathbb{T})$$

where for the last inequality we use the fact that $\delta/4 \leq D/2^{L+1}$, which follows from what we derived earlier that $\delta \leq D \cdot 2^{-(L-1)}$. Plugging this result into the 1-step discretization bound, we get

$$\mathbb{E}\left[\sup_{\theta,\theta'\in\mathbb{T}} \left(X_{\theta} - X_{\theta'}\right)\right] \leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}} \left(X_{\gamma} - X_{\gamma'}\right)\right] + 2\mathbb{E}\left[\max_{\substack{i,=1,\dots,N\\ \theta,\theta'\in\mathbb{U}}} \left|X_{\theta_{i}} - X_{\theta_{1}}\right|\right]\right]$$
$$\leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}} \left(X_{\gamma} - X_{\gamma'}\right)\right] + 2\mathbb{E}\left[\max_{\substack{\theta,\theta'\in\mathbb{U}\\\theta,\theta'\in\mathbb{U}}} \left(X_{\theta} - X_{\tilde{\theta}}\right)\right]$$
$$\leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\d(\gamma,\gamma')\leq\delta}} \left(X_{\gamma} - X_{\gamma'}\right)\right] + 16\mathcal{J}(\delta/4,\mathbb{T})$$

Example 18.3 (Uniform bounds on VC classes). Let \mathcal{F} be a function class on \mathcal{X} with VC-dimension ν . (For example, $\mathcal{F} = \{(-\infty, x] : x \in \mathbb{R}\}$ with $VC(\mathcal{F}) = 1$.) We saw earlier in the course that bounding

$$\|P_n - P\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}\left[f\right] \right|$$

can be reduced via symmetrization to bounding the empirical Rademacher complexity

$$\mathcal{R}_n(\mathcal{F}, x^n) = \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(x_i) \right| \right]$$

for $x^n = (x_1, \ldots, x_n)$ and Rademacher random variables $\epsilon_1, \ldots, \epsilon_n \in \{-1, +1\}$. Fix any x^n , and define

$$Z_f = \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(x_i)$$

for each $f \in \mathbb{F}$. Then, for any $f, g \in \mathcal{F}$,

$$Z_f - Z_g \in SG\left(\left\|f - g\right\|_n^2\right)$$

so that $\{Z_f\}_{f\in\mathcal{F}}$ is a sub-Gaussian process with the metric $d(f,g) = \|f-g\|_n = \sqrt{\frac{1}{n}\sum_{i=1}^n (f(x_i) - g(x_i))^2}$. Using Dudley's entropy integral bound, we immediately get

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\left|\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right|\right] \leq \frac{C}{\sqrt{n}}\int_{0}^{2}\sqrt{\log N(\mu,\mathcal{F},\|\cdot\|_{n})}d\mu$$

To bound the metric entropy on the right-hand side using the VC dimension, we use the following theorem.

Theorem 18.4 (2.6.7 in [VW06]). Let \mathcal{F} be a function class on \mathcal{X} with VC-dimension ν . Assume that \mathcal{F} is uniformly bounded by b > 0. Then, for any probability distribution Q on \mathcal{X} and for any $p \ge 1$,

$$N(\delta, \mathcal{F}, \|\cdot\|_{L_p(Q)}) \le C_0 \cdot (\nu+1)(16e)^{\nu+1} \left(\frac{b}{\delta}\right)^{p\nu}$$

for some universal constant $C_0 > 0$, where for any $f, g \in \mathcal{F}$,

$$||f - g||_{L_p(Q)} = \left(\int |f - g|^p \, dQ\right)^{1/p}$$

Then, Dudley's entropy integral bound becomes

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\left|\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right|\right] \leq \frac{C}{\sqrt{n}}\int_{0}^{2}\sqrt{\log N(\mu,\mathcal{F},\|\cdot\|_{n})}d\mu$$
$$\leq C'\cdot\sqrt{\frac{\nu}{n}}\int_{0}^{2b}\sqrt{\log(b/\delta)}d\mu$$
$$\lesssim \sqrt{\frac{\nu}{n}}$$

This is a sharper result than our previous VC result, which gives the rate $\sqrt{\frac{\nu \log n}{n}}$. In general, results using Dudley's bound can be more powerful and do not require VC concentration bounds.

References

[VW06] A. W. VAN DER VAART, J. A. WELLNER, "Weak Convergence and Empirical Processes," Springer Series in Statistics, 2006.