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6.1 Metric entropy and its uses

Let (X , d) be a metric space. We gave some examples of metric spaces, including (Rd, ‖·‖p), the d-dimensional
real space with the `p-norm, and Lp([0, 1], µ) (the Lp function space on [0, 1] with measure µ) for p ≥ 1.

We are interested in measuring how “big” these spaces are.

6.1.1 Covering numbers and metric entropy

Definition 6.1 (Covering numbers) Let δ ≥ 0. A δ-covering or δ-net of (X , d) is any set

{θ1, . . . , θN} ⊆ X

where N = N(δ), such that for any θ ∈ X , there exists i ∈ [N ] such that

d(θ, θi) ≤ δ

The δ-covering number of (X , d), denoted as N(δ,X , d), is the size of a smallest δ-covering.

There are several remarks:

1. For any (X , d), its δ-covering number is unique, but there can be several δ-coverings of that size.

2. Let B(θi, d) = {θ ∈ X : d(θ, θi) ≤ δ}. Then

X ⊆
N(δ,X ,d)⋃
i=1

B(θi, d)

3. We will only consider metric spaces (X , d) that are totally bounded, i.e.,

N(δ,X , d) <∞

for any δ > 0. Note that diam(X ) = supθ,θ′ d(θ, θ′) <∞ in such case.

4. In general, N(δ,X , d) decreases as δ increases and diverges to ∞ as δ → 0.
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Example. Let X = [−1, 1] and d(x, y) = |x− y| for x, y ∈ X . Then,

N(δ,X , d) ≤ 1

δ
+ 1 ≤ C

δ

for some C > 0. If X = [−1, 1]p, then

N(δ,X , d) ≤ C

δp

Definition 6.2 (Metric entropy) The metric entropy of (X , d) is defined as

logN(δ,X , d)

Typically, for bounded subsets of Rp with ‖·‖, or any of its equivalent norms, the metric entropy scales by

C · p log

(
1

δ

)
In general, bounded subsets of Rp are considered as “small” spaces.

For non-Euclidean spaces, e.g. function spaces, the metric entropy scales differently. We consider these as
“large” spaces.

Example. Let F = {f : [0, 1]→ R | f is L-Lipschitz}. Then,

logN(δ,F , d) � L

δ

where � denotes less than equal up to positive constants. The bound generalizes to L-Lipschitz functions
on [0, 1]p by

logN(δ,F , d) �
(
L

δ

)p
Further notions in the book can be useful depending on the area of interest.

6.1.2 Packing numbers

Definition 6.3 (Packing numbers) A δ-packing of (X , d) is any set

{θ1, . . . , θM} ⊆ X

where M = M(δ), such that
d(θi, θj) > δ

for all i 6= j.

The δ-packing number of (X , d), denoted as M(δ,X , d), is the size of a largest δ-packing set.

Again, the δ-packing number may be unique while the δ-packing set that achieves the number is not.

Sometimes we would prefer using covering numbers, while sometimes we would prefer using packing numbers.
Figure 6.1 shows an example of an ε-covering and an ε-packing.

The following is a classic lemma on the relationship between covering and packing numbers.

Lemma 6.4 For any δ > 0,
M(2δ,X , d) ≤ N(δ,X , d) ≤M(δ,X , d)

Proof: Homework.
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Figure 6.1: A comparison of an ε-covering (left) and an ε-packing (right). Figures from [GKKW06].

6.1.3 Volumetric ratios and covering numbers

Proposition 6.5 Let ‖·‖ and ‖·‖′ be two norms on Rp (e.g. ‖·‖1 and ‖·‖2). Let Bp and B′p be the corre-
sponding unit balls.1

Then, (
1

δ

)p
Vol (Bp)

Vol
(
B′p
) ≤ N(δ,Bp, ‖·‖′) ≤

Vol
(
2
δBp +B′p

)
Vol

(
B′p
)

where, for α, β > 0, αBp = {αx : x ∈ Bp}, and βBp +B′p = {βx+ y : x ∈ Bp, y ∈ B′p}.

Proof: First note that, by homework,

Vol (δBp) = δpVol (Bp)

for any δ > 0. Also, if {x1, . . . , xN} is a δ-covering of Bp in ‖·‖′, then

Bp ⊆
N⋃
i=1

{
xi + δB′p

}
where

{
xi + δB′p

}
= {x : ‖x− xi‖ ≤ δ}. Together, we get

Vol (Bp) ≤ NVol
(
δB′p

)
≤ NδpVol

(
B′p
)

Note that we assume the norm is equivalent to the Lp norm, so that we have invariance of volumes. This
gives us the lower bound

N(δ,Bp, ‖·‖′) ≥
Vol (Bp)

Vol
(
B′p
) · 1

δp

1See previous lecture note for examples of norm balls.
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To get the upper bound, let {yi, . . . , yM} be a maximal δ-packing of Bp in ‖·‖′. Then, this set is also a
δ-covering of Bp in ‖·‖′, because otherwise we can find another point that will contradict the maximality of
the δ-packing set.

The ‖·‖′-balls
{
yi + δ

2B
′
p

}M
i=1

are disjoint by the maximality of the δ-packing set. Thus,

M⋃
i=1

{
yi +

δ

2
B′p

}
⊆ Bp +

δ

2
B′p

Taking volumes we get

M

(
δ

2

)2

Vol
(
B′p
)
≤
(
δ

2

)2

Vol

((
2

δ
Bp +B′p

))
Note that the union simply becomes a product on the left-hand side, because the balls are disjoint.

Thus,

M(δ,Bp, ‖·‖′) ≤
Vol

(
2
δBp +B′p

)
Vol

(
B′p
)

Since the δ-covering number is bounded below by the δ-packing number, we have the upper bound as well.

In our applications, we can simply take ‖·‖ = ‖·‖′ to conclude that

p log

(
1

δ

)
≤ logN(δ,Bp, ‖·‖) ≤ p log

(
1 +

2

δ

)
≤ p log

(
3

δ

)
Note once again that this result holds for any norm in Rd, including the Euclidean norm.

6.1.4 Discretization

Covering and packing numbers can be used to “discretize” a supremum over an infinite space into a maximum
over a finite number of covering or packing sets. We can then give a bound on this maximum, as done in
e.g. Theorem 6.7 with sub-Gaussian random vectors.

Definition 6.6 (Sub-Gaussian random vectors.) A random vector X ∈ Rd with E [X] = 0 is sub-
Gaussian with parameter σ2, denoted as X ∈ SGd(σ2), if

vTX ∈ SG(σ2)

for all v ∈ Sd−1, where Sd−1 = {v ∈ Rd : ‖v‖ = 1} is the d-dimensional unit sphere.

Theorem 6.7 Let X ∈ SGd(σ2), and let Bd be the unit ball in (Rd, ‖·‖2). Then,

E
[

max
θ∈Bd

θTX

]
= E

[
max
θ∈Bd

∣∣θTX∣∣] ≤ 4σ
√
d

In other words, for δ ∈ (0, 1),

max
θ∈Bd

θTX ≤ 4σ
√
d+

√
2σ log

(
1

d

)
with probability 1− δ.
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Proof: Let N1/2 be a 1
2 -covering of Bd in ‖·‖2. Then,∣∣N1/2

∣∣ ≤ 5d

Next, for any θ ∈ Bd, there exists z = z(θ) ∈ N1/2 such that

θ = z + x

for some x ∈ Rd such that ‖x‖ ≤ 1
2 . Thus,

max
θ∈Bd

θTX ≤ max
z∈N1/2

zTX + max
x∈ 1

2Bd

xTX

Now, notice that maxx∈ 1
2Bd

xTX = 1
2 maxθ∈Bd

θTX. This implies that

max
θ∈Bd

θTX ≤ 2 max
z∈N1/2

zTX

This holds almost everywhere. Taking expectations, we get

E
[

max
θ∈Bd

θTX

]
≤ 2E

[
max
z∈N1/2

zTX

]
≤ 2σ

√
2 log

∣∣N1/2

∣∣
≤ 2σ

√
2d log 5

≤ 4σ
√
d

where we used Lemma 6.4 for the second inequality.

For the second claim, we use the union bound (second inequality below). For any t > 0,

P
(

max
θ∈Bd

θTX ≥ t
)
≤ P

(
2 max
z∈N1/2

zTX ≥ t
)

≤
∑

z∈N1/2

P
(
zTX ≥ t

2

)

≤
∣∣N1/2

∣∣ exp

{
− t2

8σ2

}
≤ 5d exp

{
− t2

8σ2

}

Find t such that the expression is bounded by δ:

t = σ
√

8d log 5 + 2σ
√

2 log (1/δ)

6.2 Covariance estimation

Using these techniques, we will show various bounds on estimating the covariance matrix of a random vector.
First, recall the following result we covered in homework 1.
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Theorem 6.8 (Lemma 12, [Yuan10]; Lemma 1, [RWRY11]) Let (X1, . . . , Xd) ∈ Rd be a zero-mean
random vector with covariance Σ such that

Xi√
Σii
∈ SG(σ2)

for i = 1, . . . , d. Let Σ̂ be the empirical covariance matrix. Then, for any t > 0,

max
i,j

∣∣∣Σ̂ij − Σij

∣∣∣ �√ t+ log d

n

with probability at least 1− e−t.

Note that d can be larger than n, and that the empirical covariance matrix need not be positive definite, as
long as d is a polynomial in n.

We first review some basic notions in matrix algebra. For A ∈ Rm×n with rank(A) = r ≤ min{m,n}, the
singular value decomposition (SVD) of A is given by

A = UDV T

where D = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0 are the singular values, and U ∈ Rm×r, V ∈ Rn×r has r
orthonormal columns.

Note that, for j = 1, . . . , r,
AATuj = σ2

juj

where uj ∈ Sm−1 is the jth column of U , and

ATAvj = σ2
j vj

where vj ∈ Sn−1 is the jth column of V .

The largest singular value can also be characterized as the operator norm:

σmax(A) = max
x 6=0

‖Ax‖
‖x‖

= max
x∈Sm−1,y∈Sn−1

∣∣xTAy∣∣
If A ∈ Rn×n is symmetric and positive definite, then the singular values are the square root of the eigenvalues.

In the next lecture, we will give a bound on the distance between Σ̂ and Σ in the operator norm.
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