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11.1 Persistence

Setup: Z1, · · · , Zn are i.i.d samples drawn from distribution P , where Zi = (Yi, Xi) with Yi ∈ R and
Xi ∈ Rd, and Yi = f(Xi) + ε. f can be any function. We want to predict Y using vector X. We are only
using linear predictors. Formally, for any β ∈ Rd,let

RP (β) = EP [(Y −X>β)T ] (11.1)

We assume cov[X] = Σ is non-singular, then the problem

minβ∈RdRP (β) (11.2)

has unique solution β∗ = Σ−1α where α = E[Y X].

Suppose we have a sequence {Pn} of probability distribution for Z = (Y,X) ∈ Rd+1 where d = d(n). We
also have a sequence of sets {Bn} where Bn ⊂ Rd(n). For each n, let the optimal constrained parameters be

β∗n ∈ argminβ∈Bn
RPn(β) (11.3)

Example of Bn: (1) Bn = {θ ∈ Rd(n), ‖β‖1 ≤ bn} where bn > 0; (2) Bn = {θ ∈ Rd(n), ‖β‖0 ≤ kn}

Definition of persistence: given a sequence {(Pn, β∗n)}, a sequence of estimators {β̂n} is persistent if

RPn
(β̂n) converges to RPn

(β∗n) in probability.

We will be looking at
β̂n = argminβ∈Bn

R̂(β) (11.4)

where

R̂(β) =
1

n

n∑
i=1

(yi − x>i β) (11.5)

Let Σ̃ = cov[Z] and Ẑ be the empirical covariance. Assume that ‖Σ̃− Σ̂‖∞ = maxij |Σ̃ij− ˆSigmaij | ≤ ∆n(δ)

with probability 1 − δ for all n and Pn. For β ∈ Rd+1, let β̃ = (1,−β) ∈ Rd+1, then y − x>β = z>β̃. Let
B̃n = {(−1, β) ∈ Rd+1, β ∈ Bn}, then RP (β) = Rp(β̃).

Theorem: Assume d = nα where α > 0. Then

RPn (̂̃β) ≤ RPn(β̃∗) + 2∆n(bn + 1)2 (11.6)
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Proof : RPn
(β̃) = β̃>Σ̃β̃ and R̂β̃ = β̃>Σ̂β̃. Then ∀β̃ ∈ Rd+1 and Pn, we have

|RPn(β̃)− R̂β̃ | = |β̃>(Σ̃− Σ̂)β̃|
≤ ‖Σ̃− Σ̂‖∞‖β̃‖1(Holder Inequality)
≤ ∆n(δ)(bn + 1)2

(11.7)

Then

RPn(
ˆ̃
βn) ≤ R̂(β̂n) + ∆n(δ)(bn + 1)2

≤ R̂(β̂∗n) + ∆n(δ)(bn + 1)2

≤ R̂Pn
(β̂∗n) + ∆n(δ)(bn + 1)2

(11.8)

Remark: If ∆n(δ) �
√

log d
n + log(1/δ)

n �
√

logn
n

If d = nα, δ = 1
n and β̃n = {β̃ ∈ Rd+1|‖β̃‖1 ≤ bn + 1}. Then

ˆ̃
βn is persistent if bn = o(( n

logn )
1
4 )

11.2 PCA

Let X ∈ Rd be a random vector with cov[X] = Σ. Let λi(Σ) be the eigenvalue of Σ and ui be the eigenvector
associated with λi(Σ). Assume λmax = λ1(Σ) ≥ · · · ≥ λd(Σ) ≥ 0.

PCA has several interpretations.

Optimal Linear Subspace: what is the direction v ∈ Sd−1 such that var[v>X] is maximal?

v∗ = argmaxv∈S(d−1)var[v>X] is the eigenvector associated to λmax(Σ).

More generally, let Vd×r = {Vd×rwith orthogonal columns}. The optimal solution of

argmaxV ∈Vd×r
E[‖V >X‖2] (11.9)

is the first r eigenvectors.

Low-rank Approximation: We want to find matrix Z∗ such that

Z∗ ∈ argmin‖Σ− Z‖2F
s.t. rank(Z) = r

(11.10)

Then Z∗ =
∑r
i=1 λiµiµ

>
i and ‖Z∗ − Σ‖2F =

∑d
j=i+1 λ

2
j

Subspace: suppose we want to find subspace S of Rd of dimension r ≤ d.

E‖X −ΠSX‖2 (11.11)

where ΠS is the orthonormal projection of X onto S. Then ΠS = VrV
>
r where the columns of Vr are r

largest eigenvectors.

The challenges are that we need to estimate eigenvalues and eigenvectors well.


