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4.1 Last time

4.1.1 Sub-exponential random variables

The class of sub-exponential variables is larger than sub-Gaussian, and captures variables with longer tails.
For example the χ2 distribution has a left tail that is Gaussian-like, but a longer right tail.

4.1.2 Bernstein’s inequality

We can get better bounds using Bernstein’s inequality. Hoeffding’s is sharp only if the variance is maximal.
For example, if |X − E[X]| ≤ b a.e. and σ2 = V[X], we get

P[|X − E[X]| ≥ t] ≤ 2e
− t2

2(σ2+bt) using Bernstein’s, and

P[|X − E[X]| ≥ t] ≤ 2e−
t2

2b2 using Hoeffding’s.

If t � σ2, Bernstein gives sub-Gaussian tails with parameter σ2, as opposed to the parameter b2 using
Hoeffding’s. Since σ2 = E[(X − E[X])2] ≤ b2, we get an improvement in some range of values of t.

In general we use Hoeffding’s because of its simplicity, unless we need more refined bounds. We should
use Bernstein’s inequality especially if V[X] ≤ cE[X], and in the literature this is sometimes referred to as
Bernstein’s condition (note that this is different from the Bernstein’s condition introduced in the previous
lecture).

For an example of Bernstein giving better bounds than Hoeffding, refer to Theorem 7.1 in [GKKW02].

Remark If X ∈ SG(σ2), then X2 ∈ SE(ν2, α), where ν = α = 16σ2. This is proven in Homework 2
Problem 4.
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4.2 Applications

4.2.1 Maxima

4.2.1.1 Expectation

Let X1, ..., Xn be random variables, not necessarily independent, such that log(E[eλXi ]) ≤ ψ(λ), where
λ ∈ [0, b), 0 < b ≤ ∞. Then

E[max
i
Xi] ≤ inf

λ∈[0,b)

log n+ ψ(λ)

λ
.

Proof:
eλE[maxiXi] ≤ E[eλmaxiXi ] by Jensen’s inequality

= E[max
i
eλXi ]

≤
n∑
i=1

E[eλXi ]

≤ neψ(λ) by assumption.

Taking logs, we have E[maxiXi] ≤ logn+ψ(λ)
λ . We then pick λ to minimize the RHS.

Example If ψ(λ) = λ2σ2

2 (sub-Gaussianity), then

E[max
i
Xi] ≤

log n

λ
+
λσ2

2

≤
√

2σ2 log n,

where the second inequality is obtained by noting that logn
λ is decreasing in λ and λσ2

2 is increasing, so we

balance them by setting logn
λ = λσ2

2 and solving for λ. This gives λ =
√

2 logn
σ2 . Notice that the bound is on

the order of
√

log n, so the maximum does not grow very fast even if we have many observations.

The following is one way of obtaining a general result in the case of non-sub-Gaussian random variables.
Such results can be used, for example, for sub-exponential random variables. This result is for reference and
the proof is not stated here, but can be found in Section 2.5 of [BLM13]. In general, for any u > 0,

inf
λ∈(0,b)

{
u+ ψ(λ)

λ

}
= inf{t ≥ 0 : ψ∗(t) > u},

where ψ∗(t) = supλ∈(0,b){λt− ψ(λ)}. Using this, if ψ(λ) = λ2σ2

2(1−λb) , where λ ∈ (0, 1b ), b > 0, then

E[max
i
Xi] ≤

√
2σ2 log n+ b log n

because ψ∗−1(u) =
√

2σ2u+ bu, u > 0.

Example If X1, ..., Xn ∼ χ2
p, then E[maxiXi − p] ≤

√
2p log n+ 2 log n.
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4.2.1.2 Probability

If X1, ..., Xn are random variables and Xi ∈ SG(σ2),

P[max
i
Xi > t] = P[

n⋃
i=1

{Xi ≥ t}]

≤
n∑
i=1

P[Xi ≥ t]

≤ ne−
t2

2σ2

= e−
t2

2σ2
+logn,

where the first inequality is obtained using the union bound and the second using the sub-Gaussian property
of Xi. If we want a t∗ such that P[maxiXi > t∗] ≤ δ ∈ (0, 1), then setting the RHS of the inequality above
to δ, we get

t∗ =

√
2σ2(log

1

δ
+ log n).

On the other hand, if we consider the Xi’s individually, we get P[Xi >
√

2σ2 log 1
δ ] ≤ δ, and the two only

differ by the log n term. The dimension of the problem only enters the bound logarithmically, which means
that dealing with the maximum is only almost as difficult as dealing with individual random variables. In
particular if we take δ = 1

n , we get t∗ =
√

4σ2 log n, where the additional log n term only affects the constant.

Remark In the above derivation, the Xi’s do not need to be independent. If we want to use independence
we can do so using de Morgan’s law instead of the union bound, but in this case the exponential decay is so
strong that there is not much of a difference between the two.

4.2.2 Quadratic Forms

If X is a random vector of length d, and A is a d x d symmetric matrix, XTAX is known as a quadratic
form in X, and E[XTAX] = tr(AΣ) + µTAµ, where µ = E[X] and Σ = V[X].

Now, we assume that A is a d x d symmetric positive definite matrix, µ = 0, and (without loss of generality1)
Σ = I (i.e. X ∼ Nd(0, Id)). We are interested in the concentration behavior of the quadratic form XTAX.
Now, we have

XTAX = XTΓΛΓTX

d
= ZTΓZ

=

d∑
i=1

λiZ
2
i , where λi is the ith eigenvalue of A.

1If X does not have covariance matrix I, we can standardize it by pre-multiplying by Σ− 1
2 :

XTAX = XT Σ− 1
2 Σ

1
2 AΣ

1
2 Σ− 1

2 X

d
= ZTBZ, where B = Σ

1
2 AΣ

1
2 and Z ∼ N(0, I).
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The first equality is obtained using the spectral theorem, which tells us that if A is symmetric positive definite,
we can write A = ΓΛΓT , where Λ is a diagonal matrix with the eigenvalues of A, and Γ is an orthogonal
matrix. The second equality uses the property of rotational invariance of standard normal variables: if
a standard normal random variable is pre-multiplied by an orthogonal matrix, the result is still standard

normal, i.e. ΓTX
d
= Z. In 2D, we can think of this property as rotating a contour plot of a bivariate standard

normal density, where after rotation the result is still standard normal.

Now, we note that Z2
i ∼ χ2

1, so we have reduced a potentially complicated quadratic form to a weighted sum

of χ2
1 random variables. Hence we look at concentration bounds for W =

∑d
i=1 λi(Yi − 1), where Yi ∼ χ2

1.
Then, ∀t > 0,

P[W ≥ 2‖λ‖
√
t+ 2‖λ‖∞t] ≤ e−t and P[W ≤ −2‖λ‖

√
t] ≤ e−t,

where ‖λ‖ =
√∑

λ2i = |||A|||F , the Frobenius norm, and ‖λ‖∞ = maxi λi = |||A|||op, the operator norm. The

operator norm is also equal to sup{x:‖x‖=1} x
TAx. For details on the derivation see Example 2.12 in [BLM13]

and Lemma 1 in [LM00].

The following result is an extension to sub-Gaussian random variables, and is known as the Hanson-Wright
inequality. The proof is in [RV13] and Homework 2 Problem 5.

If X1, ..., Xd are independent and Xi ∈ SG(σ2),

P[|XTAX − E[XTAX]| ≥ t] ≤ 2e
−cmin

{
c1t

2

|||A|||F
,

c2t

|||A|||op

}
,

where c1 and c2 depend on σ2.

4.3 Bounded Difference Inequality

The bounded difference inequality allows us to get bounds on a function of independent random variables,
where the function could be more complicated than just a sum. Let Z = f(X1, ..., Xn), where X1, ..., Xn are
independent. Let Y0 = E[Z] and for k = 1, ..., n let Yk = E[Z|X1, ..., Xk]. In particular, Yn = Z. Then, by
telescoping,

Z − E[Z] = Yn − Y0

=

n∑
k=1

(Yk − Yk−1)

=

n∑
k=1

Dk,

where Dk = Yk − Yk−1. We have expressed Z, a possibly complicated function of the Xi’s, as a sum of k
random variables. However, these Dk’s are not independent, so we will need several more tools.

Remark The ordering of Xi’s is not important!

4.3.1 Martingales

Let (Ω,F) be a probability space. F0 = {φ,Ω} is the trivial σ-field. A filtration is a sequence F0 ⊂ F1 ⊂ F2...
of sub-σ-fields of F .
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The sequence {Yk}k=1,2,... is adapted to the filtration if Yk is Fk-measurable ∀ k.

This sequence is a martingale if E[|Yk|] <∞ and E[Yk+1|Fk] = Yk ∀ k.

4.3.2 Doob Construction

Let Z = f(X1, ..., Xn) be integrable, and Fk = σ(X1, ..., Xk) for k = 0, ..., n. Then Yk = E[Z|Fk] is a
martingale. This is known as the Doob martingale or Levy martingale.

If (Yk,Fk)k=0,1,... is a martingale, then (Dk,Fk)k=1,2,..., where Dk = Yk − Yk−1, is a martingale difference
sequence. It is adapted to the filtration, and E[Dk] = 0 ∀ k.

4.3.3 Concentration bounds for martingale difference sequences

Theorem 4.1 Let (Dk,Fk)k=1,2,... be a martingale difference such that

E[eλDk |Fk−1] ≤ e
λ2ν2k

2 ∀ |λ| < 1

αk
,

where νk, αk > 0.

Then

1.
∑n
k=1Dk ∈ SE(ν∗, α∗), where ν2∗ =

∑n
k=1 ν

2
k and α∗ = maxk αk.

2. P[|
∑n
k=1Dk| ≥ t]

2e
− t2

2ν2∗ if 0 ≤ t ≤ ν2
∗
α∗

2e−
t2

2α∗ otherwise
.

Proof:
E[eλ

∑n
k=1Dk ] = E[E[eλ

∑n
k=1Dk |Fn−1]]

= E[eλ
∑n−1
k=1 DkE[eλDn |Fn−1]]

≤ E[eλ
∑n−1
k=1 Dk ]e

λν2n
2 , if |λ| < 1

αn

≤ e
λ2

∑n
k=1 ν

2
k

2 , if |λ| < 1

maxk αk
,

where the second equality is because eλ
∑n−1
k=1 Dk is Fn−1-measurable, and the last inequality is obtained by

iterating this procedure.

Point 2 follows directly from point 1.

Remark This result is the same as for independent sub-exponential variables.
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