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8.1 Linear Regression

We assume Y = Xβ∗ + ε, where X is a fixed nxd design matrix and ε1, ..., εn
ind∼ SG(σ2). Let β̂ = f(Y ).

The following two tasks are of interest:

• Mean Estimation. Let Ỹ be an independent draw with the same distribution as Y . Then, we seek to
minimize the mean squared predictive error, which is defined as

1

n
E
[
||Ỹ −Xβ̂||2

]
(8.1)

Alternatively, we could seek to minimize the mean square error,

1

n
E
[
||X

(
β∗ − β̂

)
||2
]

(8.2)

• Parameter Estimation. Here, we seek to minimize the expected `2 norm between the vector of estimated
parameters and true parameters,

1

n
E
[
||
(
β∗ − β̂

)
||2
]

(8.3)

8.1.1 Least Squares Estimator

To define the least square estimator β̂LS , we first need a generalized notion of matrix inverses known as the
matrix psuedoinverse.

Definition 8.1 (Pseudoinverse of a matrix) Let A be an nxm matrix. Then, A+ is a psuedoinverse
of A if it satisfies

AA+A = A, (AA+)T = AA+ (8.4)

A+AA+ = A+, (A+A)T = A+A (8.5)
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Note that if A is square and invertible, A−1 is a pseudoinverse of A. Also, note that in general the pseu-
doinverse is not unique.

Now, take the objective function 1
n ||Y −Xβ||

2, and minimize it. Setting the gradient to zero, we have

∇B
(
||YXβ||2

)
= 0→ (8.6)

XTXβ = XTY (8.7)

and by the convexity of the objective function, any beta which satisfies the above condition will achieve the
minimum.

Definition 8.2 (Least Squares Estimator) The least squares estimator β̂LS is defined in general to
be

β̂LS := (XTX)+XTY (8.8)

for some psuedoinverse (XTX)+. Note that if d < n and XTX is invertible, we recover β̂LS := (XTX)−1XTY .

Also, note that in general, if β̂LS is a least squares estimator δ ∈ Kernel(X) then β̂LS + δ is also a least
squares estimator.

The least squares estimator turns out to have good mean estimation properties.

Theorem 8.3 (Mean Estimation using Least Squares Estimator) Assume (ε1, ..., εn) ∈ SGn(σ2). Let

r = dim(column space(X)) and β̂ = β̂LS Then, ∃C > 0 such that

1

n
E
[
||X

(
β∗ − β̂

)
||2
]
≤ Cσ

2r

n
, and (8.9)

P
(

1

n
||X

(
β∗ − β̂

)
||2 ≤ C

σ2r + log( 1
δ )

n
)

)
≥ 1− δ (8.10)

Proof: By the optimality of β̂,

||Y −Xβ̂||2 ≤ ||Y −Xβ∗||2 = ||ε||2 (8.11)

Also, we have that,

||
(
Y −Xβ̂

)
||2 = ||X

(
β̂ − β∗

)
||2 + ||ε||2 − 2

〈
ε,X

(
β̂ − β∗

)〉
(8.12)

Putting these two together yields
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||X
(
β̂ − β∗

)
||2 ≤ 2

〈
ε,X

(
β̂ − β∗

)〉
→ (8.13)

||X
(
β̂ − β∗

)
|| ≤ 2

〈
ε,

X
(
β̂ − β∗

)
||X

(
β̂ − β∗

)
||

〉
(8.14)

where the second line comes from dividing both sides by ||X
(
β̂ − β∗

)
||. To bound the RHS, we note that

since r = dim(column space(X)), there exists some projection matrix Φ into Rr and a unit vector v ∈ Sr−1

X
(
β̂ − β∗

)
||X

(
β̂ − β∗

)
||

= Φv,→ (8.15)

〈
ε,

X
(
β̂ − β∗

)
||X

(
β̂ − β∗

)
||

〉
= 〈ε̃, v〉 (8.16)

where ε̃ = εTΦ

We therefore have that

||X
(
β̂ − β∗

)
||2 ≤ 4 max

v∈Sr−1

(
ε̃T v
)2

(8.17)

Since Φ is a projection matrix (i.e. it has orthonormal columns), we have that ε̃ ∈ SGr(σ2). Therefore, by
Cauchy-Schwarz, we have that

≤ 4 max
v∈Sr−1

(
ε̃T v
)2 ≤ 4

r∑
j=1

E [ε̃j ] ≤ 16σ2r (8.18)

To show the bound in probability, we use our standard discretization argument. Let N1/2 be a minimal
1/2-covering of Sr−1.

max
v∈Sr−1

(
ε̃T v
)
≤ 2 max

z∈N1/2

(
ε̃T z
)
→ (8.19)

P( max
z∈V1/2

(
ε̃T z
)2 ≥ t) ≤ |N1/2| exp (

−t
8σ2

) (8.20)

≤ 6r exp (
−t
8σ2

) (8.21)

Setting the above equal to d and solving for t yields the desired result.

Also, note that
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||β̂ − β?||2λ2min(X) ≤ ||X
(
β̂ − β∗

)
||2 (8.22)

which gives us a meaningful (though not necessarily optimal) bound on ||β̂ − β?||2 if λ2min(X) > 0. This
does not help us, of course, when d > n as in that case λ2min(X) = 0 always holds.

8.2 Penalized Regression and Lasso

Assume the same model for Y . Now, instead of the least squares estimator, consider the penalized regression
estimator.

Definition 8.4 (Penalized Least Squares Estimator) Let λn > 0, and choose a penalty function f(β) ≥
0. Then, the corresponding penalized least squares estimator β̂PLS satisfies

β̂PLS ∈ argmin
β

{
1

2n
||Y −Xβ||2 + λnf(β)

}
(8.23)

The LASSO estimator β̂LASSO is the penalized least squares estimator with the `1 norm as penalty function,
fβ = ||β||1. There are several equivalent formulations of the LASSO problem.

Proposition 8.5 (Equivalent Statements of LASSO) The following three statements lead to equivalent
solution paths, over λn, B and R respectively:

argmin
β

1

2n
||Y −Xβ||2 + λn||β||1 (8.24)

argmin
β
||β||1s.t.

1

2n
||Y −Xβ||2 ≤ B2 (8.25)

argmin
β

1

2n
||Y −Xβ||2s.t.||β||1 ≤ R (8.26)

The LASSO also has good mean estimation properties. The following theorem is proved in next class.

Theorem 8.6 (Mean Estimation using LASSO) If λn ≥ ||X
T ε
n ||∞, then any LASSO solution satisfies

||X
(
β̂ − β∗

)
||2

n
≤ 4||β∗||1λn (8.27)


