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21.1 Non-parameteric Least-Squares

21.1.1 Recap

We assume

yi = f∗(xi) + εi, i = 1...n

where εi = σwi for some σ > 0 and w1, w2, ...., wn are i.i.d. N(0, 1), with fixed design x1, ..., xn ∈ X ⊆ Rd.
For the current analysis we assume f∗ belongs to the function class F considered in the least-square problem.
Let

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

(yi − f(xi))
2

be our estimated function. The goal is to relate the excess risk

‖f̂ − f∗‖n :=

√√√√ 1

n

n∑
i=1

(f̂(xi)− f∗(xi))2

to the local Gaussian Complexity of F at scale δ > 0:

Gn(F , δ) := Ew

[
sup

f∈F, ‖f‖n≤δ

σ

n

∣∣∣∣∣
n∑
i=1

wif(xi)

∣∣∣∣∣
]
.

21.1.2 Bound via Critical Radius

A central object of this analysis is δ that satisfies the critical inequality

Gn(F , δ)
δ

≤ δ

2σ
, (21.1)

and the critical radius δn that satisfies the above inequality with equality, which must exist for any star-
shaped function class F . Recall that we say a function class F is star-shaped if

f ∈ F ⇒ αf ∈ F

for any α ∈ [0, 1]. Define the shifted function class F ∗ = {f − f∗|f ∈ F}. We have the following theorem.
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Theorem 21.1 If F∗ is Star-Shaped, then for any δ satisfies the critical inequality (21.1) and t ≥ δ, the

nonparametric least-square estimate f̂n satisfies

P ( ‖f̂ − f∗‖2n ≥ 16tδn ) ≤ exp{−ntδn
2σ2
}, (21.2)

which implies
‖f̂ − f∗‖2 . δ2

n

both in expectation and with high probability.

Proof: Recall that Gn(u,H)
u is non-increasing if H is star-shaped. Now start with the basic inequality

1

2
‖∆̂n‖2n ≤

σ

n

n∑
i=1

wi∆̂(xi)

where ∆̂n := f̂ − f∗. Define the bad event as

A(u) :=

{
∃g ∈ H, ‖g‖n ≥ u

∣∣∣∣ ∣∣σn
n∑
i=1

wig(xi)
∣∣ ≥ 2u‖g‖n

}
In Lemma 21.2, we show that for u ≥ δn,

P (A(u)) ≤ exp{−nu
2

2σ2
}.

Now using the lemma with H = F∗ and u =
√
tδn for some t ≥ δn. With probability no less than

1− exp{−ntδn2σ2 }, we have

∀g ∈ F∗ ∩ {g : ‖g‖n ≥ u},
σ

n

∣∣∣∣∣
n∑
i=1

wig(xi)

∣∣∣∣∣ ≤ 2‖g‖nu.

Therefore, consider two cases:

Case 1: ‖∆̂n‖n <
√
tδn. We obtain ‖∆̂n‖2n ≤ tδn trivially.

Case 2: ‖∆̂n‖n ≥
√
tδn.

Since ∆̂n ∈ F∗ and ‖∆̂n‖n ≥
√
tδn, we have

1

2
‖∆̂n‖2 ≤

σ

n

∣∣∣∣∣
n∑
i=1

wi∆̂(xi)

∣∣∣∣∣ ≤ sup
g∈F∗,

√
tδn≤‖g‖n≤‖∆̂n‖n

σ

n

∣∣∣∣∣
n∑
i=1

wig(xi)

∣∣∣∣∣ ≤ 2‖∆̂n‖
√
tδn

and therefore ‖∆̂n‖2 ≤ 16tδn.

Now we prove the lemma that bounds the probability of bad event.

Lemma 21.2 Let H be star shaped. For u ≥ δn (critical radius of H), the event

A(u) :=

{
∃g ∈ H, ‖g‖n ≥ u

∣∣∣∣ ∣∣σn
n∑
i=1

wig(xi)
∣∣ ≥ 2u‖g‖n

}
has

P (A(u)) ≤ exp{−nu
2

2σ2
}.



Lecture 21: November 14 21-3

Proof: We show that the bad event A(u) implies the maximum of a Gaussian Process deviates much from
its mean. In particular, suppose there is g ∈ H s.t. ‖g‖n ≥ u and

σ

n

∣∣∣∣∣
n∑
i=1

wig(xi)

∣∣∣∣∣ ≥ 2u‖g‖n.

Then let g̃ := g u
‖g‖n , we have ‖g̃‖n = u and g̃ ∈ H (due to H’s star shape). Then if A(u) occurs, we will also

have g̃ ∈ H such that

σ

n

∣∣∣∣∣
n∑
i=1

wig̃(xi)

∣∣∣∣∣ =
u

‖g‖n

∣∣∣∣∣σn
n∑
i=1

wig(xi)

∣∣∣∣∣ ≥ 2u2,

which is equivalent to the event Zn(u) ≥ 2u2 where

Zn(u) := sup
g̃∈H, ‖g̃‖n≤u

σ

n

∣∣∣∣∣
n∑
i=1

wig̃(xi)

∣∣∣∣∣
is the supremun of Gaussian Process

σ

n

n∑
i=1

wig̃(xi) ∼ N(0,
σ2

n
‖g̃‖2n).

Recall that if Z = (Z1, ..., Zn) are i.i.d. N(0, σ2) then if f : Rn → R is Lipschitz with parameter L, we have

P (|f(Z)− E[f(Z)]| > t) ≤ 2 exp

{
− t2

2L2σ2

}
.

Now notice that Zn(u) is a Lipschitz function w.r.t. (w1, ..., wn) with parameter L = σu/
√
n, so for any

s > 0,

P (Zn(u) ≥ E[Zn(u)] + s) ≤ exp

(
− ns2

2u2σ2

)
.

Letting s = u2, we obtain

P
(
Zn(u) ≥ E[Zn(u)] + u2

)
≤ exp

(
−nu

2

2σ2

)
.

To bound the expectation, note σGn(u) = E[Zn(u)]. Since u ≥ δn (by assumption) and Gn(u)/u is non-
increasing w.r.t. u,

σ
Gn(u)

u
≤ σGn(δn)

δn
=
δn
2
,

which implies

E[Zn(u)] ≤ uδn ≤ u2.

In conclusion,

P (A(u)) ≤ P (Zn(u) ≥ 2u2) ≤ P (Zn(u) ≥ E[Zn(u)] + u2) ≤ exp

(
−nu

2

2σ2

)
.



21-4 Lecture 21: November 14

21.1.3 How to compute critical radius δn?

The critical radius is generally hard to compute. In practice, we look for upper bound of δn that satisfies
the critical inequality (21.1). A very loose bound that holds for all function classes F is δn ≤ σ. In most
of cases, we can obtain much tighter results by bounding the local Gaussian Complexity using, for example,
Dudley integral.

Since not all function classes F ∗ are star-shaped, in general, we can find an upper bound of δn on the Star
Hull of F ∗:

star(F∗) := {αf | f ∈ F∗, α ∈ [0, 1]} .

Define the δ-radius ball of F∗:

Bn(F∗, δ) = {h ∈ star(F∗) | ‖h‖n ≤ δ} ,

and let N(u) be the u-covering number of Bn(F∗, δ) in the ‖.‖n norm. Then we have the following lemma.

Lemma 21.3 Any δ ∈ (0, σ] satisfying

16√
n

∫ δ

δ2/4σ

√
logN(u)du ≤ δ2

4σ

serves as an upper bound on the critical radius δn.

Proof: (Sketch) Let (g1, ..., gN ) be a minimal δ2

4σ -covering of Bn(F∗, δ) in ‖.‖n. Then we have

Gn(δ) ≤ E

[
N

max
J=1

1

n

∣∣∣∣∣
n∑
i=1

wigJ(xi)

∣∣∣∣∣
]

+
δ2

4σ
(21.3)

since

√∑n
i=1 w

2
i

n ≤ 1 and

√∑n
i=1(g(xi)−gJ (xi))2

n = ‖g − gJ‖n ≤ δ2

4σ . Then applying chaining argument to

bound the first term in (21.3), we obtain

Gn(δ) ≤ 16√
n

∫ δ

δ2/4σ

√
logN(u)du+

δ2

4σ
,

which is less or equal to δ2

2σ as desired as long as∫ δ

δ2/4σ

√
logN(u)du ≤ δ2

2σ
.

Example (Linear Regression) Let X be an n× d design matrix with rows {xi}ni=1. We consider the linear
function class

FLin :=
{
f(x) = 〈θ, x〉 | θ ∈ Rd

}
.

In this example, we use the general theory to show that the least-square estimate fθ̂ satisfies

‖fθ̂ − fθ∗‖
2
n =
‖X(θ̂ − θ∗)‖2

n
. σ2 rank(X)

n
.
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Note in this special case we have F∗Lin = FLin for any choice of f∗ and FLin is convex and hence it is also
star-shaped. Now notice that ‖fθ‖n defines a norm on range(X) and Bn(F∗, δ) is isomorphic to a δ-ball in
range(X). Therefore, by the volume ratio argument (in Ch. 5),

logN(u) ≤ r log(1 +
2δ

u
)

where r = rank(X) = dim(range(X)). Then we have

1√
n

∫ δ

0

√
logN(u)du ≤ 1√

n

∫ δ

0

√
r log(1 +

2δ

u
)du

= δ

√
r

n

∫ 1

0

√
log(1 +

2

u
)du

≤ cδ
√
r

n

for some constant c. And therefore, we only need an δ satisfying

cδ

√
r

n
≤ δ2

4σ
,

which gives an

δ � σ
√
r

n
.


