Lecture 14: October 19

Lecturer: Alessandro Rinaldo

 $Scribes:\ Enxu\ Yan$

Fall 2016

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

14.1 Uniform Bound via Rademacher Complexity

We are interested in bounding the quantity

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P}_f|$$

where $\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(X_i)$ and $\mathbb{P} f = \mathbb{E}[f(X)]$ with X and $\{X_i\}_{i=1}^n$ i.i.d. from \mathbb{P} . In the following analysis, we assume only boundedness of function $f \in \mathcal{F}$:

Assumption 14.1 \mathcal{F} is a class of functions $f : \mathcal{X} \to \mathbb{R}$ satisfying $||f||_{\infty} \leq b, \forall f \in \mathcal{F}$.

Given an *n*-tuple $\boldsymbol{x}^n := (x_1, ..., x_n) \in \mathcal{X}$ and let

$$\mathcal{F}(\boldsymbol{x}^n) = \{ (f(x_1), f(x_2), ..., f(x_n)) \in \mathcal{R}^n \mid f \in \mathcal{F} \}.$$

The empirical Rademacher Complexity of \mathcal{F} w.r.t. samples x^n is defined as

$$\mathcal{R}_n(\mathcal{F}(\boldsymbol{x}^n)) := \mathbb{E}_{\boldsymbol{\epsilon}} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| \right]$$
(14.1)

where $\boldsymbol{\epsilon}^n := (\epsilon_1, ..., \epsilon_n)$ are i.i.d. Rademarcher random variables (i.e. $\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 1/2$). $\mathcal{R}_n(\mathcal{F}(\boldsymbol{x}^n))$ computes the expected maximum correlation between *n* random signs $\boldsymbol{\epsilon}^n$ and points in $\mathcal{F}(\boldsymbol{x}^n)$. The Rademacher Complexity of function class \mathcal{F} w.r.t. a distribution \mathbb{P} is then

$$\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_X[\mathcal{R}_n(\mathcal{F}(X^n))] = \mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| \right].$$
(14.2)

Note X^n and ϵ^n are independent. $\mathcal{R}_n(\mathcal{F})$ is a measure on the "size" of \mathcal{F} . If it is large, then $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ could be also large. We want

 $\mathcal{R}_n(\mathcal{F}) \to 0$

as $n \to \infty$.

14.1.1 Upper Bound

For upper bounding $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$, we have the following theorem.

Theorem 14.2 Let \mathcal{F} be a class of functions satisfying Assumption 14.1. We have

$$\mathcal{P}\left(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \ge 2\mathcal{R}_n(\mathcal{F}) + t\right) \le 2\exp\left\{-\frac{nt^2}{2b^2}\right\}$$

for all n and t > 0.

When $n \to \infty$, from the Theorem, if $\mathcal{R}_n(\mathcal{F}) \to 0$, $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \to 0$ almost surely by Borel-Canteli's lemma. Function class with $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \to 0$ in probability is called *Glivenko-Cantelli* class.

Proof: (Theorem 14.2)

The proof has two parts. Part-(i) shows that $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ converges around its mean $\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}]$. Part-(ii) bounds $\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}]$ by $2\mathcal{R}_n(\mathcal{F})$ (using symmetrization technique).

Part i) To apply bounded differences inequality on the function

$$G(x_1, ..., x_n) := \sum_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n \bar{f}(x_i)|,$$

where $\bar{f}(X) = f(X) - \mathbb{E}_X[f(X)]$, we need to verify that G(.) has bounded difference when varying each single coordinate. Since G(.) is invariant to permutation of $(x_1, ..., x_n)$, without loss of generality, let \boldsymbol{y} and \boldsymbol{x} differ by only J-th coordinate $y_J \neq x_J$. For any $f \in \mathcal{F}$, we have

$$\begin{aligned} |\frac{1}{n}\sum_{i=1}^{n}\bar{f}(x_{i})| &-\sup_{h\in\mathcal{F}}|\frac{1}{n}\sum_{i=1}^{n}\bar{h}(y_{i})| \leq |\frac{1}{n}\sum_{i=1}^{n}\bar{f}(x_{i})| - |\frac{1}{n}\sum_{i=1}^{n}\bar{f}(y_{i})| \\ &\leq \frac{1}{n}|\bar{f}(x_{J}) - \bar{f}(y_{J})| \\ &\leq \frac{2b}{n}. \end{aligned}$$

Then taking supremum over $f \in \mathcal{F}$ on both sides, we have $G(\boldsymbol{x}) - G(\boldsymbol{y}) \leq 2b/n$. Similarly, we can obtain $G(\boldsymbol{y}) - G(\boldsymbol{x}) \leq 2b/n$ by the same argument. Then since we have verified $|G(\boldsymbol{x}) - G(\boldsymbol{y})| \leq 2b/n$ when $\boldsymbol{x}, \boldsymbol{y}$ differ by a single coordinate, applying the *bounded differences inequality* yields

$$\mathbb{P}\left(\left|\left|\left|\mathbb{P}_{n}-\mathbb{P}\right|\right|_{\mathcal{F}}-\mathbb{E}\left[\left|\left|\mathbb{P}_{n}-\mathbb{P}\right|\right|_{\mathcal{F}}\right]\right| \geq t\right) = \mathbb{P}\left(\left|G(\boldsymbol{x}^{n})-\mathbb{E}[G(\boldsymbol{x}^{n})]\right| \geq t\right) \leq 2\exp\left\{-\frac{nt^{2}}{2b^{2}}\right\}$$

as desired.

Part ii) Using the symmetrization argument, we have

$$\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}] = \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n (f(X_i) - \mathbb{E}_{Y_i}[f(Y_i)]) \right| \right] \\ = \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E}_{Y_i} \left[\frac{1}{n} \sum_{i=1}^n (f(X_i) - f(Y_i)) \right] \right| \right] \\ \le \mathbb{E}_{X,Y} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n (f(X_i) - f(Y_i)) \right| \right]$$

where the last is Jensen's inequality. Now let $\boldsymbol{\epsilon} = (\epsilon_1, ..., \epsilon_n)$ be i.i.d. Rademacher random variables. The distribution of $\epsilon_i(f(X_i) - f(Y_i))$ is exactly the same as $f(X_i) - f(Y_i)$. Therefore,

$$\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}] \leq \mathbb{E}_{X,Y,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(X_i) - f(Y_i)) \right| \right] \\ = 2\mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right] = 2\mathcal{R}_n(\mathcal{F}).$$

14.1.2 Lower Bound

To show that Rademacher complexity gives a tight enough bound on

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}[f(X)] \right|,$$

the following theorem gives a more general result on bounding the expectation of $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ with the expectation of its symmetrized version

$$\|\mathcal{R}_n\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right|.$$

Theorem 14.3 For any convex, non-decreasing function $\Phi : \mathbb{R} \to \mathbb{R}$, we have

$$\mathbb{E}_{X,\epsilon}\left[\Phi(\frac{1}{2}\|\mathcal{R}_n\|_{\bar{\mathcal{F}}})\right] \le \mathbb{E}_X\left[\Phi(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}})\right] \le \mathbb{E}_{X,\epsilon}\left[\Phi(2\|\mathcal{R}_n\|_{\mathcal{F}})\right],\tag{14.3}$$

where $\bar{\mathcal{F}} = \{f - \mathbb{E}[f] \mid f \in \mathcal{F}\}.$

Proof: The proof for the upper bound is similar to that for Theorem 14.2. First, by applying symmetrization and Jensen's inequality, we have

$$\mathbb{E}_{X}\left[\Phi(\|\mathbb{P}_{n}-\mathbb{P}\|_{\mathcal{F}})\right] = \mathbb{E}_{X}\left[\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}[f(Y_{i})]\right|\right)\right]$$
$$\leq \mathbb{E}_{X,Y}\left[\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-f(Y_{i})\right|\right)\right]$$
$$\leq \mathbb{E}_{X,Y,\epsilon}\left[\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}(f(X_{i})-f(Y_{i}))\right|\right)\right]$$

Then by triangular inequality and Jensen's inequality (again!), we have

$$\mathbb{E}_{X}\left[\Phi(\|\mathbb{P}_{n}-\mathbb{P}\|_{\mathcal{F}})\right] \leq \mathbb{E}_{X,Y,\epsilon}\left[\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(X_{i})\right|+\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(Y_{i})\right|\right)\right]$$
$$\leq \frac{1}{2}\mathbb{E}_{X,\epsilon}\left[\Phi\left(2\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(X_{i})\right|\right)\right]+\frac{1}{2}\mathbb{E}_{Y,\epsilon}\left[\Phi\left(2\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(Y_{i})\right|\right)\right]$$
$$=\mathbb{E}_{X,\epsilon}\left[\Phi\left(2\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(X_{i})\right|\right)\right],$$

which proves the upper bound in (14.3). Now for the lower bound, using Jensen's inequality and symmetrization equality, we have

$$\mathbb{E}_{X,\epsilon} \left[\Phi\left(\frac{1}{2} \|\mathcal{R}_n\|_{\bar{\mathcal{F}}}\right) \right] = \mathbb{E}_{X,\epsilon} \left[\Phi\left(\frac{1}{2} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(X_i) - \mathbb{E}_Y[f(Y_i)]) \right| \right) \right] \\ \leq \mathbb{E}_{X,Y,\epsilon} \left[\Phi\left(\frac{1}{2} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(X_i) - f(Y_i)) \right| \right) \right] \\ = \mathbb{E}_{X,Y} \left[\Phi\left(\frac{1}{2} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n (f(X_i) - f(Y_i)) \right| \right) \right]$$

By triangular inequality and by convexity of $\Phi(.)$, we have

$$\Phi\left(\frac{1}{2}\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}(f(X_{i})-f(Y_{i}))\right|\right) \\
\leq \Phi\left(\frac{1}{2}\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}(f(X_{i})-\mathbb{E}[f(X)])\right| + \frac{1}{2}\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}(f(Y_{i})-\mathbb{E}[f(X)])\right|\right) \\
\leq \frac{1}{2}\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}(f(X_{i})-\mathbb{E}[f(X)])\right|\right) + \frac{1}{2}\Phi\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}(f(Y_{i})-\mathbb{E}[f(X)])\right|\right).$$

Taking expectation on both sides and noticing that Y_i and X_i are identically distributed give the lower bound in (14.3).

Note that the lower bound in (14.3) takes norm w.r.t. $\overline{\mathcal{F}}$ instead of \mathcal{F} . The following corollary gives a lower bound of $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ in terms of *Rademacher complexity*. It follows directly from the lower bound in Theorem 14.3.

Corollary 14.4 For a function class \mathcal{F} satisfying assumption 14.1 and any $\delta \geq 0$,

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \ge \frac{1}{2}\mathcal{R}_n(\mathcal{F}) - \frac{\sup_{f \in \mathcal{F}} |\mathbb{E}[f]|}{2\sqrt{n}} - \delta$$
(14.4)

with probability at least $1 - e^{-\frac{n\delta^2}{2b^2}}$.

The lower bound (14.4) indicates the when $n \to \infty$, if the *Rademacher Complexity* $\mathcal{R}_n(\mathcal{F})$ does not converge to 0, $\|\mathbb{P}_n - \mathbb{P}\|$ will also not go to 0. In other words, the convergence of *Rademacher Complexity* is a **necessary** and **sufficient** condition for \mathcal{F} to be a *Glivenko-Cantelli* class.

In the next lecture, we will focus on how to bound the Rademacher complexity $\mathcal{R}_n(\mathcal{F})$ to get an actual uniform concentration bound for the function class \mathcal{F} .