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14.1 Uniform Bound via Rademacher Complexity

We are interested in bounding the quantity

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

where Pnf = 1
n

∑n
i=1 f(Xi) and Pf = E[f(X)] with X and {Xi}ni=1 i.i.d. from P. In the following analysis,

we assume only boundedness of function f ∈ F :

Assumption 14.1 F is a class of functions f : X → R satisfying ‖f‖∞ ≤ b,∀f ∈ F .

Given an n-tuple xn := (x1, ..., xn) ∈ X and let

F(xn) = {(f(x1), f(x2), ..., f(xn)) ∈ Rn | f ∈ F} .

The empirical Rademacher Complexity of F w.r.t. samples xn is defined as

Rn(F(xn)) := Eε

[
sup
f∈F
| 1
n

n∑
i=1

εif(xi)|

]
(14.1)

where εn := (ε1, ..., εn) are i.i.d. Rademarcher random variables (i.e. P(εi = 1) = P(εi = −1) = 1/2).
Rn(F(xn)) computes the expected maximum correlation between n random signs εn and points in F(xn).
The Rademacher Complexity of function class F w.r.t. a distribution P is then

Rn(F) := EX [Rn(F(Xn))] = EX,ε

[
sup
f∈F
| 1
n

n∑
i=1

εif(xi)|

]
. (14.2)

Note Xn and εn are independent. Rn(F) is a measure on the ”size” of F . If it is large, then ‖Pn − P‖F
could be also large. We want

Rn(F)→ 0

as n→∞.

14.1.1 Upper Bound

For upper bounding ‖Pn − P‖F , we have the following theorem.
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Theorem 14.2 Let F be a class of functions satisfying Assumption 14.1. We have

P
(
‖Pn − P‖F ≥ 2Rn(F) + t

)
≤ 2 exp

{
−nt

2

2b2

}
for all n and t > 0.

When n → ∞, from the Theorem, if Rn(F) → 0, ‖Pn − P‖F → 0 almost surely by Borel-Canteli’s lemma.
Function class with ‖Pn − P‖F → 0 in probability is called Glivenko-Cantelli class.

Proof: ( Theorem 14.2 )

The proof has two parts. Part-(i) shows that ‖Pn − P‖F converges around its mean E[‖Pn − P‖F ]. Part-(ii)
bounds E[‖Pn − P‖F ] by 2Rn(F) (using symmetrization technique).

Part i) To apply bounded differences inequality on the function

G(x1, ..., xn) :=
∑
f∈F

| 1
n

n∑
i=1

f̄(xi)|,

where f̄(X) = f(X) − EX [f(X)], we need to verify that G(.) has bounded difference when varying each
single coordinate. Since G(.) is invariant to permutation of (x1, .., xn), without loss of generality, let y and
x differ by only J-th coordinate yJ 6= xJ . For any f ∈ F , we have

| 1
n

n∑
i=1

f̄(xi)| − sup
h∈F
| 1
n

n∑
i=1

h̄(yi)| ≤ |
1

n

n∑
i=1

f̄(xi)| − |
1

n

n∑
i=1

f̄(yi)|

≤ 1

n
|f̄(xJ)− f̄(yJ)|

≤ 2b

n
.

Then taking supremum over f ∈ F on both sides, we have G(x) − G(y) ≤ 2b/n. Similarly, we can obtain
G(y) −G(x) ≤ 2b/n by the same argument. Then since we have verified |G(x) −G(y)| ≤ 2b/n when x, y
differ by a single coordinate, applying the bounded differences inequality yields

P
(∣∣∣∣‖Pn − P‖F − E[‖Pn − P‖F ]

∣∣∣∣ ≥ t) = P
(∣∣∣∣G(xn)− E[G(xn)]

∣∣∣∣ ≥ t) ≤ 2 exp

{
−nt

2

2b2

}
as desired.

Part ii) Using the symmetrization argument, we have

E[‖Pn − P‖F ] = EX

[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

(f(Xi)− EYi [f(Yi)])

∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣EYi [
1

n

n∑
i=1

(f(Xi)− f(Yi))]

∣∣∣∣
]

≤ EX,Y

[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣
]
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where the last is Jensen’s inequality. Now let ε = (ε1, ..., εn) be i.i.d. Rademacher random variables. The
distribution of εi(f(Xi)− f(Yi)) is exactly the same as f(Xi)− f(Yi). Therefore,

E[‖Pn − P‖F ] ≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

εi(f(Xi)− f(Yi))

∣∣∣∣
]

= 2EX,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣
]

= 2Rn(F).

14.1.2 Lower Bound

To show that Rademacher complexity gives a tight enough bound on

‖Pn − P‖F = sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣,
the following theorem gives a more general result on bounding the expectation of ‖Pn − P‖F with the
expectation of its symmetrized version

‖Rn‖F := sup
f∈F

∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣.
Theorem 14.3 For any convex, non-decreasing function Φ : R→ R, we have

EX,ε

[
Φ(

1

2
‖Rn‖F̄ )

]
≤ EX

[
Φ(‖Pn − P‖F )

]
≤ EX,ε

[
Φ(2‖Rn‖F )

]
, (14.3)

where F̄ = {f − E[f ] | f ∈ F}.

Proof: The proof for the upper bound is similar to that for Theorem 14.2. First, by applying symmetrization
and Jensen’s inequality, we have

EX

[
Φ(‖Pn − P‖F )

]
= EX

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(Yi)]

∣∣∣∣∣
)]

≤ EX,Y

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− f(Yi)

∣∣∣∣∣
)]

≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

Then by triangular inequality and Jensen’s inequality (again!), we have

EX

[
Φ(‖Pn − P‖F )

]
≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑

i=1

εif(Yi)

∣∣∣∣∣
)]

≤ 1

2
EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣
)]

+
1

2
EY,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Yi)

∣∣∣∣∣
)]

= EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣
)]

,
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which proves the upper bound in (14.3). Now for the lower bound, using Jensen’s inequality and symmetriza-
tion equality, we have

EX,ε

[
Φ

(
1

2
‖Rn‖F̄

)]
= EX,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εi(f(Xi)− EY [f(Yi)])

∣∣∣∣∣
)]

≤ EX,Y,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)]

By triangular inequality and by convexity of Φ(.), we have

Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)

≤ Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− E[f(X)])

∣∣∣∣∣+
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Yi)− E[f(X)])

∣∣∣∣∣
)

≤ 1

2
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− E[f(X)])

∣∣∣∣∣
)

+
1

2
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Yi)− E[f(X)])

∣∣∣∣∣
)
.

Taking expectation on both sides and noticing that Yi and Xi are identically distributed give the lower
bound in (14.3).

Note that the lower bound in (14.3) takes norm w.r.t. F̄ instead of F . The following corollary gives a lower
bound of ‖Pn−P‖F in terms of Rademacher complexity. It follows directly from the lower bound in Theorem
14.3.

Corollary 14.4 For a function class F satisfying assumption 14.1 and any δ ≥ 0,

‖Pn − P‖F ≥
1

2
Rn(F)−

supf∈F |E[f ]|
2
√
n

− δ (14.4)

with probability at least 1− e−
nδ2

2b2 .

The lower bound (14.4) indicates the when n→∞, if the Rademacher Complexity Rn(F) does not converge
to 0, ‖Pn − P‖ will also not go to 0. In other words, the convergence of Rademacher Complexity is a
necessary and sufficient condition for F to be a Glivenko-Cantelli class.

In the next lecture, we will focus on how to bound the Rademacher complexity Rn(F) to get an actual
uniform concentration bound for the function class F .


