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5.1 Martingale-based methods

Last time, we studied tail bounds on the maximum of random variables as well as a quadratic form of random
variables. Now we turn our attention to concentration inequalities of more general functions.

5.1.1 Bounded difference inequality

Theorem 5.1 Let {Dy, Fi}32, be a martingale difference sequence and suppose that E [eAD’*" |}"k_1] <
N2 glmost everywhere (a.e.) for any |\ < 1/ay, and vy, g > 0. Then > r_y Dy is sub-exponential with

parameters (\/Y p_, Vi, o).

Proof: For A € (—1/ay,1/a.), apply iterated expectation to get

E {GA(ZQ:I D;«)] K {6)\(22;11 D’“)E [eAD’"

fnfl]:|
<E {e’\ seol Dk} NVh/2

< e)\z Shoavi/2?

which proves the result. [ |

The sub-exponential tail bound provides the following inequality.

Corollary 5.2
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Remember that bounded random variables are sub-Gaussian, which gives the following corollary.

Corollary 5.3 [Azuma-Hoeffding] Let {Dy, ;. }72, be a martingale difference sequence such that Dy, €
[ak, bg] almost surely for all k =1,...,n. Then for all t >0,

P llZDk > t] < 2exp <_ZZ1(Z—%)2> .

k=1

5-1



5-2 Lecture 5: September 14

Proof: Since Dy € [ag,bi] almost surely, the conditioned variable (Dy|Fj—1) is also bounded in [a, bk]
almost surely. Therefore, (Dy|F);_1) is sub-Gaussian at most o = (b, —ay)/2 for all k = 1,...,n. The result
follows by Theorem 5.1 and Corollary 5.2 with parameters (/> ,_, (bx — ax)?/4, 0). [ |

As an application of these results, we will establish a useful inequality, which is called the bounded difference
inequality or McDiarmid’s inequality. Let us begin by defining the bounded difference property.

Definition 5.4 [Bounded difference property] A function f : R? — R satisfies the bounded difference
property (BDP) if there exists positive constants (L1, ..., Ly,) such that for each k =1,2,... n,

1f (@1 Bh 1, Ty Ty 1y -y Tn) — F(Z1, oo T, @ Thg1s - )| < Ly for all z, 2" € R
Theorem 5.5 [Bounded difference inequality] Suppose that Z = f(X) satisfies the bounded differ-

ence property with parameters (Ly,...,L,) and that the random vector X = (X1,...,X,,) has independent
elements. Then

22

P(|Z -E(2)| 2 t) < 2exp (‘m

) for allt > 0.

Proof: Start by constructing a martingale difference using the Doob martingale decomposition of Z as

Dy =E(2)
Dy =E(Z|X1,..., Xp) —E(Z|X1,..., Xj_1) fork=1,... n.

Then we have Z — E(Z) = Y_;_; Dj. Define the random variables
A = ing(Z|X1, v Xp—1,2) —E(Z|X4q,...,Xk—1) and
B, = sgpIE(Z|X17 coy Xpo1,2) —E(Z)1 X, .0, Xio1)
so that By > Ay a.e. for all k =1,...,n. In addition,
Dy — Ay = E(Z|X1,..., Xy) —inf B(Z|X1,..., X 1,2) 20 ac.

Similarly, By — Dy > 0 a.e. Now observe that

Dy < B, — A
< smuwl? EZ|X1,...,Xk—1,2] —E[Z|X1,..., Xk—1,9]
< L.
Apply the Azuma-Hoeffding inequality to get the result. ]

5.1.2 Applications
Example 5.6 [Kernel density estimate] Let X1,...,X,, be independent and identically distributed ran-

dom samples from a distribution P with a Lebesgue-density p = dP/du. We are interested in estimating the
shape of p. Its kernel density estimate is

R 1 - {,C—Xi
ph(x)ZRhZK< W ) for x € R,
i=1
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where K(z) > 0, [ K(xz)dz =1 and h > 0. One way of measuring a prozimity between py, and p is
Z= [ lonte) = pla)lds = F(Xs.. X,
Then, denote p), (x) for the kernel density estimate obtained by replacing X; by X| and bound

[ ihe ot [ o) el
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where we used the triangle inequality and the variable transformation to get the bound. This shows that f

satisfies the bounded difference property with L = 2/n for all k = 1,...,n. Then McDiarmids inequality
gives

f( Xy, X X)) — fF(X, e, Xy, X))

IN

n 2
P(7 ~E(2)| > 1) < 2exp(~"5")

where the upper bound does not depend on h.

Example 5.7 [Empirical measure] Let A be a class of sets in R? and Xy,...,X,, be independent and
identically distributed random samples from a distribution P on R%. We are interested in

Z = sup ‘[P’(A) - ]P’n(A)‘
AeA

where P, (A) = L 3" I(X; € A) is the empirical measure of A. The empirical distribution function provides

n i=1
an example of empirical measures when d = 1. For a class A = {(—o0,z] : € R},

Zy = sttlp |Fo(t) — F(t)|
where F,(t) = P, ((—00,t]) and F(t) =P(X <t). In particular, Glivenko-Cantelli theorem says that Z3 — 0

almost surely. Later on, we will look into bounds on Z. For now, denote Z = f(X1,...,X,) and P, (A) for
the empirical measure of A obtained by replacing X; by X!

If( X1, X X)) = f( Xy, Xy, Xy)| = | sup |P(A) = Pl (A)| — sup [P(A) — Pu(A4)]]

AcA AcA
1
< sup [P, (4) = P (4)| = —.
AeA n

Hence, Z satisfies the bounded difference property with Ly = 1/n for all k = 1,...,n. Then McDiarmid’s
inequality provides

P(|Z —E(Z)| > t) < 2exp(—2nt?).

5.2 Lipschitz functions of Gaussian variables

We investigate the concentration properties of Lipschitz functions of Gaussian variables. Let us say that a
function f: R — R is L-Lipschitz with respect to the Euclidean norm || - ||o if

[f(z) = f)l < Lllz = yll2 for ,y € RY.
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A Lipschitz function is absolutely continuous and thus is differentiable almost everywhere. Now, the following
theorem guarantees that any Lipschitz function of Gaussian variables is sub-Gaussian with parameter at most
L.

Theorem 5.8 Let (Xy,...,X,,) be a vector of i.i.d. Gaussian variables from N(0,0%) and let f : R? — R
be L-Lipschitz. Then the variable f(X) — E(f(X)) is sub-Gaussian with parameter at most L, and thus

2

P[|f(X)—E(f(X))| > t] <2exp (W) for allt > 0.

Remarkably, this is a dimension free inequality.
Proof: Refer to [BLM13] in p.125. |

Example 5.9 [Maximum of Gaussian variables]| For a random vector X = (X1,...,X4) ~ Ng(0,%),
deﬁne Z = maxij<i<d Xi or Z = maxij<i<d |Xz| and 0'72,““; = maXj<;,;<d Ei,j- Then,

M|Z—E(Z>|>t]<zexp(—2f ).

mazx

Proof: Denote X = AW where W ~ Ng(0,1) and AAT = . Then Z = maxi<i<a X; = f(W) where
f:RY = R is the function

f(x) = glggd(Aw)i

Notice that the function f is Lipschitz with the parameter L = maxi<i<q \/ijl A?’j because for x,y € RY
we have

|(Az); — (Ay)i]

d
> A2z —ylls
j=1

by Cauchy-Schwarz inequality. Furthermore,

d d
Z A2, =V(X;) =V Z A7,
j=1 j=1

Therefore, [ is 0maz-Lipschitz. The proof is done by Theorem 5.8. ]

5.3 Covering and packing number

Let Y; be X, or |X;| where X; is sub-Gaussian or sub-Exponential. In this case, we are often interested in
max;ez Y; or E [max;ez Y;] for a given class Z. If the size of 7 is infinite, it is challenging to develop uniform
bounds. To tackle this problem, we will discretize Z by picking a finite subset 7 of 7 and then approximating
max;ecz Y; with max; 7 Y;. Before we go into the details, let us define a metric space.
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Figure 5.1: Unit sphere in L,

Definition 5.10 [Metric space] A metric space is an ordered pair (X,d) where X is a set and d is a
metric on X such that d: X x X — R and for x,y,z € X, the following holds.

1. d(z,y) > 0 and d(z,y) =0 if and only if x =y

2. d(z,y) = d(y, )
3. d(z,z) < d(x,y) + d(y, 2)

Example 5.11 Here are some examples of metric spaces.

o (RY|-[]) and |lz[| = /32, 23

1
R || - [],) and ||z]], = (3, 20)"7 forp>1

?

o RL o) and [|z|loc = max; |x;]

(
(
(
e ({0,1},dy) and dg(z,y) = ézgzl I(x; # yi) called the Hamming distance

Lastly, we talked about L,-space. Let X = {f : [0,1] — R} be a set of functions. An L,-space on [0, 1]
contains functions of X' for which the p-th power of the absolute value is p-integrable. That is

1 1/p
||f||p—(/0 Ifl”du> < o

where p is a measure on [0,1] and p > 1. The common choice of p is p = 2, which allows a richer theory.
The L,-distance between f and g is defined as

1

If = gllp = (/ () —g<x>|Pdu)p

I|f = glloc = sup |f(z) —g(z)|.
z€]0,1]

Especially, when p = oo,
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