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5.1 Martingale-based methods

Last time, we studied tail bounds on the maximum of random variables as well as a quadratic form of random
variables. Now we turn our attention to concentration inequalities of more general functions.

5.1.1 Bounded difference inequality

Theorem 5.1 Let {Dk,Fk}∞k=1 be a martingale difference sequence and suppose that E
[
eλDk |Fk−1

]
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2ν2
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Proof: For λ ∈ (−1/α∗, 1/α∗), apply iterated expectation to get
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which proves the result.

The sub-exponential tail bound provides the following inequality.

Corollary 5.2
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Remember that bounded random variables are sub-Gaussian, which gives the following corollary.

Corollary 5.3 [Azuma-Hoeffding] Let {Dk,Fk}∞k=1 be a martingale difference sequence such that Dk ∈
[ak, bk] almost surely for all k = 1, . . . , n. Then for all t > 0,

P

[
|
n∑
k=1

Dk| ≥ t

]
≤ 2 exp

(
− 2t2∑n

k=1(bk − ak)2

)
.
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Proof: Since Dk ∈ [ak, bk] almost surely, the conditioned variable (Dk|Fk−1) is also bounded in [ak, bk]
almost surely. Therefore, (Dk|Fk−1) is sub-Gaussian at most σ = (bk−ak)/2 for all k = 1, . . . , n. The result
follows by Theorem 5.1 and Corollary 5.2 with parameters (

√∑n
k=1(bk − ak)2/4, 0).

As an application of these results, we will establish a useful inequality, which is called the bounded difference
inequality or McDiarmid’s inequality. Let us begin by defining the bounded difference property.

Definition 5.4 [Bounded difference property] A function f : Rd → R satisfies the bounded difference
property (BDP) if there exists positive constants (L1, . . . , Ln) such that for each k = 1, 2, . . . , n,

|f(x1, . . . , xk−1, x, xk+1, . . . , xn)− f(x1, . . . , xk−1, x
′, xk+1, . . . , xn)| ≤ Li for all x, x′ ∈ Rd.

Theorem 5.5 [Bounded difference inequality] Suppose that Z = f(X) satisfies the bounded differ-
ence property with parameters (L1, . . . , Ln) and that the random vector X = (X1, . . . , Xn) has independent
elements. Then

P(|Z − E(Z)| ≥ t) ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
for all t ≥ 0.

Proof: Start by constructing a martingale difference using the Doob martingale decomposition of Z as

D0 = E(Z)

Dk = E(Z|X1, . . . , Xk)− E(Z|X1, . . . , Xk−1) for k = 1, . . . , n.

Then we have Z − E(Z) =
∑n
k=1Dk. Define the random variables

Ak = inf
x

E(Z|X1, . . . Xk−1, x)− E(Z|X1, . . . , Xk−1) and

Bk = sup
x

E(Z|X1, . . . , Xk−1, x)− E(Z|X1, . . . , Xk−1)

so that Bk ≥ Ak a.e. for all k = 1, . . . , n. In addition,

Dk −Ak = E(Z|X1, . . . , Xk)− inf
x
E(Z|X1, . . . , Xk−1, x) ≥ 0 a.e.

Similarly, Bk −Dk ≥ 0 a.e. Now observe that

Dk ≤ Bk −Ak

≤ sup
x,x′

∣∣∣E [Z|X1, . . . , Xk−1, x]− E [Z|X1, . . . , Xk−1, y]
∣∣∣

≤ Lk.

Apply the Azuma-Hoeffding inequality to get the result.

5.1.2 Applications

Example 5.6 [Kernel density estimate] Let X1, . . . , Xn be independent and identically distributed ran-
dom samples from a distribution P with a Lebesgue-density p = dP/dµ. We are interested in estimating the
shape of p. Its kernel density estimate is

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
for x ∈ R,
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where K(x) ≥ 0,
∫
K(x)dx = 1 and h > 0. One way of measuring a proximity between p̂h and p is

Z =

∫ ∞
−∞
|p̂h(x)− p(x)|dx = f(X1, . . . , Xn).

Then, denote p̂′h(x) for the kernel density estimate obtained by replacing Xi by X ′i and bound∣∣∣f(X1, . . . , X
′
i, . . . , Xn)− f(X1, . . . , Xi, . . . , Xn)

∣∣∣ =
∣∣∣ ∫ ∞
−∞
|p̂′h(x)− p(x)|dx−

∫ ∞
−∞
|p̂h(x)− p(x)|dx

∣∣∣
≤ 1

nh

∫ ∞
−∞

∣∣∣K (x−X ′i
h

)
−K

(
x−Xi

h

) ∣∣∣dx
≤ 1

nh

[
h

∫ ∞
−∞

K(z′)dz′ + h

∫ ∞
−∞

K(z)dz

]
=

2

n

where we used the triangle inequality and the variable transformation to get the bound. This shows that f
satisfies the bounded difference property with Lk = 2/n for all k = 1, . . . , n. Then McDiarmids inequality
gives

P(|Z − E(Z)| ≥ t) ≤ 2 exp(−nt
2

2
)

where the upper bound does not depend on h.

Example 5.7 [Empirical measure] Let A be a class of sets in Rd and X1, . . . , Xn be independent and
identically distributed random samples from a distribution P on Rd. We are interested in

Z = sup
A∈A

∣∣P(A)− Pn(A)
∣∣

where Pn(A) = 1
n

∑n
i=1 I(Xi ∈ A) is the empirical measure of A. The empirical distribution function provides

an example of empirical measures when d = 1. For a class A = {(−∞, x] : x ∈ R},

Z1 = sup
t

∣∣Fn(t)− F (t)
∣∣

where Fn(t) = Pn((−∞, t]) and F (t) = P(X ≤ t). In particular, Glivenko-Cantelli theorem says that Z1 → 0
almost surely. Later on, we will look into bounds on Z. For now, denote Z = f(X1, . . . , Xn) and P′n(A) for
the empirical measure of A obtained by replacing Xi by X ′i∣∣f(X1, . . . , X

′
i, . . . , Xn)− f(X1, . . . , Xi, . . . , Xn)

∣∣ =
∣∣ sup
A∈A

∣∣P(A)− P′n(A)
∣∣− sup

A∈A

∣∣P(A)− Pn(A)
∣∣∣∣

≤ sup
A∈A

∣∣P′n(A)− Pn(A)
∣∣ =

1

n
.

Hence, Z satisfies the bounded difference property with Lk = 1/n for all k = 1, . . . , n. Then McDiarmid’s
inequality provides

P(|Z − E(Z)| ≥ t) ≤ 2 exp(−2nt2).

5.2 Lipschitz functions of Gaussian variables

We investigate the concentration properties of Lipschitz functions of Gaussian variables. Let us say that a
function f : Rd → R is L-Lipschitz with respect to the Euclidean norm || · ||2 if

|f(x)− f(y)| ≤ L||x− y||2 for x, y ∈ Rd.
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A Lipschitz function is absolutely continuous and thus is differentiable almost everywhere. Now, the following
theorem guarantees that any Lipschitz function of Gaussian variables is sub-Gaussian with parameter at most
L.

Theorem 5.8 Let (X1, . . . , Xn) be a vector of i.i.d. Gaussian variables from N(0, σ2) and let f : Rd → R
be L-Lipschitz. Then the variable f(X)− E(f(X)) is sub-Gaussian with parameter at most L, and thus

P
[∣∣f(X)− E(f(X))

∣∣ ≥ t] ≤ 2 exp

(
− t2

2L2σ2

)
for all t ≥ 0.

Remarkably, this is a dimension free inequality.

Proof: Refer to [BLM13] in p.125.

Example 5.9 [Maximum of Gaussian variables] For a random vector X = (X1, . . . , Xd) ∼ Nd(0,Σ),
define Z = max1≤i≤dXi or Z = max1≤i≤d |Xi| and σ2

max = max1≤i,j≤d Σi,j. Then,

P [|Z − E(Z)| ≥ t] ≤ 2 exp

(
− t2

2σ2
max

)
.

Proof: Denote X = AW where W ∼ Nd(0, I) and AAT = Σ. Then Z = max1≤i≤dXi = f(W ) where
f : Rd → R is the function

f(x) = max
1≤i≤d

(Ax)i

Notice that the function f is Lipschitz with the parameter L = max1≤i≤d

√∑d
j=1A

2
i,j because for x, y ∈ Rd

we have

∣∣(Ax)i − (Ay)i
∣∣ =

∣∣ d∑
j=1

Ai,j(xj − yj)
∣∣

≤

√√√√ d∑
j=1

A2
i,j ||x− y||2

by Cauchy–Schwarz inequality. Furthermore,

d∑
j=1

A2
i,j = V(Xi) = V

 d∑
j=1

Ai,jZj

 .
Therefore, f is σmax-Lipschitz. The proof is done by Theorem 5.8.

5.3 Covering and packing number

Let Yi be Xi or |Xi| where Xi is sub-Gaussian or sub-Exponential. In this case, we are often interested in
maxi∈I Yi or E [maxi∈I Yi] for a given class I. If the size of I is infinite, it is challenging to develop uniform
bounds. To tackle this problem, we will discretize I by picking a finite subset Ĩ of I and then approximating
maxi∈I Yi with maxi∈Ĩ Yi. Before we go into the details, let us define a metric space.
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p<1 p=1 p=2 p=∞

Figure 5.1: Unit sphere in Lp

Definition 5.10 [Metric space] A metric space is an ordered pair (X , d) where X is a set and d is a
metric on X such that d : X × X → R and for x, y, z ∈ X , the following holds.

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Example 5.11 Here are some examples of metric spaces.

• (Rd, || · ||) and ||x|| =
√∑

i x
2
i

• (Rd, || · ||p) and ||x||p = (
∑
i x

p
i )

1/p
for p ≥ 1

• (Rd, || · ||∞) and ||x||∞ = maxi |xi|

• ({0, 1}d, dH) and dH(x, y) = 1
d

∑d
i=1 I(xi 6= yi) called the Hamming distance

Lastly, we talked about Lp-space. Let X = {f : [0, 1] → R} be a set of functions. An Lp-space on [0, 1]
contains functions of X for which the p-th power of the absolute value is µ-integrable. That is

||f ||p =

(∫ 1

0

|f |pdµ
)1/p

<∞

where µ is a measure on [0, 1] and p ≥ 1. The common choice of p is p = 2, which allows a richer theory.
The Lp-distance between f and g is defined as

||f − g||p =

(∫ 1

0

∣∣f(x)− g(x)|pdµ
) 1
p

.

Especially, when p =∞,

||f − g||∞ = sup
x∈[0,1]

|f(x)− g(x)|.
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