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16.1 A uniform law via Rademacher complexity

16.1.1 Classes with polynomial discrimination

Recall if F is a class of functions that are uniformly bounded by b > 0, then we have

t2
B((|Pa— Plly > 2Ro(F) +1) < exp (—Zb)

where
n

sup l Z € f(Xi)

feFin —

n

] d [P~ Pllz = sup 237 (F(X) - E[f X)L (16)

=1

Rn(F)=Ex.

To bound R,,(F), we will use the VC theory and later we will develop more general tools.

Remark 16.1 (Concentration property of Rademacher complexity) Letg: R — R such that |g(z)—
9W)| < Lz —yl, 9(0) = 0 and set go F ={go f, f € F}. Then

Rn(goF) <2LR,(F).

Example 16.2 Suppose the function f(x) = x? is defined on [—L, L]. Then,

Exe | %‘ > ef (X))

feF =1

n
<4LEx Z%\Zeif(xi)
feF " i=1

Definition 16.3 (Polynomial discrimination) A class F of functions defined on the domain X such that
F ={f:X — R} has polynomial discrimination with parameter v > 1 if for each positive integer n and
collection ot = {1, -+ ,xn} of n points in X, the set

Fat) ={(f(z1),-- , f(zn)) €R", f € F}
has cardinality upper bounded as

[F (@) < (n+1)".
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Lemma 16.4 If F has polynomial discrimination with paramter v, then for all n and any x}, we have

E stlelg}%‘ iqf(wi) ] < D(Y) %
where D(x7) = sup,cx \/7%
Corollary 16.5 As a corollary, we obtain the following results.
1) Ra(F) < 28 (D)) | 120D
2 If ||l = sup 1@ < b for all f € F, then R, (F) < 2 ﬂ%%iﬂ

16.1.2 Uniform convergence of CDF's

Consider the function class F = {(—o0,t] : t € R}. In this case, || P, — P||7 defines the Kolmogorov-Smirnov
statistic as

1Pn = Pllr = sup |Fy (1) — (1)

Note that for a fixed 2} = (21, -+ ,x,) € R™, the ordered samples
(1) Sx) < S Tne1) S T

split the real line into at most n + 1 intervals including (—oco, (1)) and (x(y),c0] and for a given ¢, the
indicator function I}; o) takes the value 1 for all ;) > t, and 0 for all other samples. It follows that for any
given sample 27, we have |F(2})| < n+ 1 and F has poloynomial discrimination with » = 1. Consequently,
we can show a quantitative version of Glivenko-Cantelli theorem as follows.

Corollary 16.6 (Classical Glivenko-Cantelli) Let F(t) = P(X < t) be the CDF of a random variable X,
and let F,(t) be the empirical CDF based on n i.i.d. samples X; ~P. Then,

. 1 1 t?
P("Fn—FHm > 1og [ E D )”> < exp <_n2 )
n

for all t >0, and hence ||F, — F||oo “3 0.

Proof: The claim follows from Eq.(16.1) and Corollary 16.5. ]

Dvoretzky-Kiefer-Wolfowitz (DKW) inequality provides a shaper tail bound of ||E, — F||s as

nt?

IEJ><||Fn_F||oo >t> < 2exp <_2>

for every t > 0.
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16.2 Vapnik-Chervonenkis (VC) dimension

Let us assume F is a collection of {0,1} functions and represent this class using the collection A of subsets
in X as follows.

feF—=A={zecX: f(x)=1}
Then, for a fixed =}, we have
F(xf)=A(z]) ={Anal : A e A}

Clearly, we can see that [ A(27)| < 2™. A VC-class of sets is a class such that | A(27T)| grows only polynomially
in n.

Definition 16.7 (Shattering and VC dimension) The class A shatters the n-tuple 7 if |A(x])| = 2.
The VC-dimension v of A is the largest n such that some n-tuple x7 is shattered by A.

If n > v, then no n-tuple «7 is shattered by .A.

Example 16.8 Here are two typcial examples.

e For A= {(—o0,z]: z € R}, the VC-dimension of A is v(A) = 1.
o For A={(b,a]:b< a}, the VC-dimension of A is v(A) = 2.

If the VC dimension is finite, then the growth function cannot grow too quickly.

Lemma 16.9 (Sauer’s lemma) Suppose A has the finite VC-dimension v4. Then for n > va,
VA n
Az < < 1)7A.
mpc D) <3 (7) <)

Let Sa(n) be the shattering coefficient, max,» [A(27)[. Then, Lemma 16.9 provides the following inequality.

Rn(}_)g\/ZlogSA(Qn)<\/4VAlogn

n - n

16.3 Controlling the VC-dimension

16.3.1 Basic operations

Let A and B be two collections of subsets in X'(= R%). Then,

1. Sa(n) = Sye(n).
2.IfAUB={AUB: A€ A, B e B}, then

Saun(n) < Sa(n)Sp(n).
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3. The same bound holds for

ANnB={ANB:Ae€ A BeB}
AxB={AxB:Aec A Bc¢€B}

4. Sp(n+m) <Sa(n)Sa(m).
5. If C = AU B, then

Sc(n) < Sa(n) + Sp(n).
More examples are provided as

L IfA= {(—007.1?1] Koo X (—OO,J?n] : (xla' o ,.Td) € Rd}v then v4 = d.

2. Let A be the set of all rectangles in R?. Then, v4 = 2d.

16.3.2 Vector space structure

Proposition 16.10 Let G be a finite dimensional vector space of real-valued functions on R®. Then, the
class

A={{z:g(x) <0},Vg € G}

has VC dimension at most dim(G).

Example 16.11 (Spheres in R?) Consider the sphere

A= {B(z,7): x € RY 7 >0} where B(z,r)={y: |z —y|* <r’}
Then, vg < d+ 2.
Proof: Notice that Vz € R? and r > 0,

d
fry(e) = Z (@i — yi)Q —r?

d d d
=D a2l + Y yi -2 w7 <0
=1 =1 i=1
We first define a feature map ¢ : R — R¥2 wig ¢(z) = (1,21, -+ ,24,||7||3). Then, consider functions of

the form
ge(x) = cTp(x) where c€ RIT2,

The family of functions {g.,c € R¥2} is a vector space of dimension d + 2, and it contains the function
class fry(z). Then, the result follows by Proposition 16.10. [ |



