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16.1 A uniform law via Rademacher complexity

16.1.1 Classes with polynomial discrimination

Recall if F is a class of functions that are uniformly bounded by b > 0, then we have
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To bound Rn(F), we will use the VC theory and later we will develop more general tools.

Remark 16.1 (Concentration property of Rademacher complexity) Let g : R→ R such that |g(x)−
g(y)| ≤ L|x− y|, g(0) = 0 and set g ◦ F = {g ◦ f, f ∈ F}. Then

Rn(g ◦ F) ≤ 2LRn(F).

Example 16.2 Suppose the function f(x) = x2 is defined on [−L,L]. Then,
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Definition 16.3 (Polynomial discrimination) A class F of functions defined on the domain X such that
F = {f : X → R} has polynomial discrimination with parameter ν ≥ 1 if for each positive integer n and
collection xn1 = {x1, · · · , xn} of n points in X , the set

F(xn1 ) = {(f(x1), · · · , f(xn)) ∈ Rn, f ∈ F}

has cardinality upper bounded as

|F(xn1 )| ≤ (n+ 1)ν .
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Lemma 16.4 If F has polynomial discrimination with paramter ν, then for all n and any xn1 , we have
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Corollary 16.5 As a corollary, we obtain the following results.

1) Rn(F) ≤ 2EX [D(xn1 )]

√
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n

2) If ||f ||∞ = sup
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|f(x)| < b for all f ∈ F , then Rn(F) ≤ 2b
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n
.

16.1.2 Uniform convergence of CDFs

Consider the function class F = {(−∞, t] : t ∈ R}. In this case, ||Pn−P ||F defines the Kolmogorov-Smirnov
statistic as

||Pn − P ||F = sup
t

∣∣∣F̂n(t)− F (t)
∣∣∣.

Note that for a fixed xn1 = (x1, · · · , xn) ∈ Rn, the ordered samples

x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n)

split the real line into at most n + 1 intervals including (−∞, x(1)] and (x(n),∞] and for a given t, the
indicator function I[t,∞) takes the value 1 for all x(i) ≥ t, and 0 for all other samples. It follows that for any
given sample xn1 , we have |F(xn1 )| ≤ n+ 1 and F has poloynomial discrimination with ν = 1. Consequently,
we can show a quantitative version of Glivenko-Cantelli theorem as follows.

Corollary 16.6 (Classical Glivenko-Cantelli) Let F (t) = P(X ≤ t) be the CDF of a random variable X,
and let F̂n(t) be the empirical CDF based on n i.i.d. samples Xi ∼ P. Then,
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for all t ≥ 0, and hence ||F̂n − F ||∞
a.s.→ 0.

Proof: The claim follows from Eq.(16.1) and Corollary 16.5.

Dvoretzky-Kiefer-Wolfowitz (DKW) inequality provides a shaper tail bound of ||F̂n − F ||∞ as
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16.2 Vapnik-Chervonenkis (VC) dimension

Let us assume F is a collection of {0, 1} functions and represent this class using the collection A of subsets
in X as follows.

f ∈ F ⇐⇒ A = {x ∈ X : f(x) = 1}

Then, for a fixed xn1 , we have

F(xn1 ) = A(xn1 ) = {A ∩ xn1 : A ∈ A}.

Clearly, we can see that |A(xn1 )| ≤ 2n. A VC-class of sets is a class such that |A(xn1 )| grows only polynomially
in n.

Definition 16.7 (Shattering and VC dimension) The class A shatters the n-tuple xn1 if |A(xn1 )| = 2n.
The VC-dimension ν of A is the largest n such that some n-tuple xn1 is shattered by A.

If n > ν, then no n-tuple xn1 is shattered by A.

Example 16.8 Here are two typcial examples.

• For A = {(−∞, x] : x ∈ R}, the VC-dimension of A is ν(A) = 1.

• For A = {(b, a] : b < a}, the VC-dimension of A is ν(A) = 2.

If the VC dimension is finite, then the growth function cannot grow too quickly.

Lemma 16.9 (Sauer’s lemma) Suppose A has the finite VC-dimension νA. Then for n ≥ νA,
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Let SA(n) be the shattering coefficient, maxxn
1
|A(xn1 )|. Then, Lemma 16.9 provides the following inequality.
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16.3 Controlling the VC-dimension

16.3.1 Basic operations

Let A and B be two collections of subsets in X (= Rd). Then,

1. SA(n) = SAC (n).

2. If A ∪B = {A ∪B : A ∈ A, B ∈ B}, then

SA∪B(n) ≤ SA(n)SB(n).
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3. The same bound holds for

A ∩B = {A ∩B : A ∈ A, B ∈ B}
A×B = {A×B : A ∈ A, B ∈ B}

4. SA(n+m) ≤ SA(n)SA(m).

5. If C = A ∪B, then

SC(n) ≤ SA(n) + SB(n).

More examples are provided as

1. If A = {(−∞, x1]× · · · × (−∞, xn] : (x1, · · · , xd) ∈ Rd}, then νA = d.

2. Let A be the set of all rectangles in Rd. Then, νA = 2d.

16.3.2 Vector space structure

Proposition 16.10 Let G be a finite dimensional vector space of real-valued functions on Rd. Then, the
class

A = {{x : g(x) ≤ 0},∀g ∈ G}

has VC dimension at most dim(G).

Example 16.11 (Spheres in Rd) Consider the sphere

A = {B(x, r) : x ∈ Rd, r > 0} where B(x, r) = {y : ||x− y||2 ≤ r2}.

Then, νA ≤ d+ 2.

Proof: Notice that ∀x ∈ Rd and r > 0,

fr,y(x) =

d∑
i=1

(xi − yi)2 − r2

=

d∑
i=1

x2i +

d∑
i=1

y2i − 2

d∑
i=1

xiyi − r2 ≤ 0.

We first define a feature map φ : Rd → Rd+2 via φ(x) = (1, x1, · · · , xd, ||x||22). Then, consider functions of
the form

gc(x) = cTφ(x) where c ∈ Rd+2.

The family of functions {gc, c ∈ Rd+2} is a vector space of dimension d + 2, and it contains the function
class fr,y(x). Then, the result follows by Proposition 16.10.


