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3.1 Recap

Sub-gaussian random variables are a large class of variables that haev good concentration properties.
They have tail behavior like gaussian random variables and they concentrate well around their means.

We proved hoeffding’s inequality, which will be (and should be) used often with sub-gaussian random
variables, and we note that this bound is not always the sharpest. Chernoff and multiplicative bounds can
be much better if p → 0.

These results are often useful to get confidence intervals for the mean. Last time we saw that we can bound
the distance from the mean using Bernoulli variables. Since we only know the tail behavior, and don’t know
the actual distribution, we consider these variables distribution free.

Exercise:

x1 · · ·xn
iid∼ Bern(p)

P

(
|xn − p| ≥

√
1

2
ln

(
1

δ

))
≤ δ

3.2 Sub-gaussianity

In general, if x ∈ SG(σ2), we expect

P

(
xn − µ = O

(√
lnn

n

))
≥ 1− 1

nc
for any constant, c

3.2.1 Equivallent characterizations of being SG(σ2)

1. E[eλx] ≤ eλ
2σ2

2 λ ∈ R, E[x] = 0

2. ∃c > 0 s.t. P (|x| ≥ t) ≤ P (|z| ≥ t) t > 0,

3-1

http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound
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3. ∃θ > 0 s.t. [x2k] ≤ (2k)!
2kk!

θ2k

4. if p ≥ 1 E[|x|p] ≤ (eσ2)
p
2 · p · Γ(p2 ) where Γ(a) =

∫∞
0
xa−1e−xdx

a > 0
Γ(p) = (p− 1)! if p ∈ N

Proof:
Assume sub-gaussianity (item 1)

E[x] =

∫ ∞
0

P (x ≥ t) dt

E[|x|p] =

∫ ∞
0

P (|x|p ≥ t) dt

=

∫ ∞
0

P
(
|x| ≥ t

1
p

)
dt

now let’s use the fact that we have sub-gaussianity to bound this

≤ 2

∫ ∞
0

e
−t2/p

2σ2 dt

call the inside u, use chain rule

= (2σ2)p/2
∫ ∞
0

e−µ · µp/2−1dµ making substitution µ =
t2/p

2σ2

= (2σ2)p/2 · p · Γ(p/2)

Notice that if X ∼ N(0, σ2) then E[|x|p] ≤
√

2p
π · σ

p · Γ(p+1
2 )

3.2.2 Back to Hoeffding

a ≤ X ≤ b a.e. and E[x] = 0

V [x] ≤ (b− a)2

4
(not dependent on distribution)

Hoeffding assumes the worst case scenario and achieves the bound by:

ε =

{
−1 p = 1

2
1 p = 1

2
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In fact, if ε1 · · · εn
iid∼ Rademacher and X =

∑n
i=1 αiεi is a linear combination of the random variables, then

P (|x| ≥ t) ≤ 2exp

(
−t2

2‖α‖2

) ∑
α2
i = V [x] = σ2

= 2exp

(
−t2

2σ2

)
same bound as we’d expect if X were normal

specifically, same bound (up to a constant) as if X ∼ N(0, σ2)

Finding: Hoeffding is sharp if V [x] is maximal, given a ≤ X ≤ b. But, if V [x] � (b−a)2
4 than we can do

much better than Hoeffding. With Hoeffding, we assume the worst case scenario of variance.

3.3 Sub-Exponential Variables (a larger class than SG)

We can make claims about variables that have thicker tails than gaussian. These variables are called sub-
exponential.

For large t, the gaussian tail is of order e−t
2

. For laplace(1), the tail behavior is different. Specifically, the
tail behavor is P(|X| ≥ t) ≤ e−t

Definition: A random variable X ∈ SE(ν, α) if E[eλ(X−µ)] ≤ eλ
2ν2

2 where ν > 0, α ≥ 0, |λ| < 1
α , µ = E[X]

Sub-exponential variables only differ from sub-gaussian variables in the range of λ. If X ∈ SG(σ2) then
X ∈ SE(σ, 0) where 1

0 =∞. This means that the moment generating function of sub-exponential variables
may not be defined everywhere. As long as it holds for |λ| < 1

α we’re good.

Exercise:

Z ∼ N(0, 1), X = Z2 ∼ χ2
1

Take λ < 1
2 , E[X] = µ = 1

E[eλ(X−1)] =
1√
2π

∫ ∞
−∞

eλ(Z
2−1)−Z2

2 dz

=
1√
2π
e−λ

∫ ∞
−∞

e
Z2

2 (1−2λ)dz

setting Y =
√

1− 2λ and dz =
dy√

1− 2y

=
1√
2π
e−λ

∫ ∞
−∞

e
−Y 2

2

√
1− 2λ

dy

=
e−λ√
1− 2λ

(
1√
2π

∫ ∞
−∞

e
−Y 2

2 dy

)

=
e−λ√
1− 2λ

because the integral of the standard normal pdf is 1

≤ e 4λ2

2 if |λ| < 1

4
=⇒ X ∈ SE(ν = 2, α = 4)
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Theorem 3.1 Sub-exponential tail bounds

Let X ∈ SE(ν, α), then

P (|x− µ| ≥ t) ≤

{
2e
−t2

2ν2 0 ≤ t ≤ ν2

α

2e
−t
2α t > ν2

α

Finding: When t is small, we recover gaussian behavior. When t is large, we recover exponential behavior.

Proof:
Assume E[x] = 0, t ≥ 0

P[x ≥ t] ≤ e−λt E[eλX ]

≤ e−λt eλ
2ν2

2

= g(λ, t) λ ∈ [0, 1/α)

We found a bound, with an extra parameter, and call it g.

g∗(t) = inf
λ∈[0,1/α)

g(λ, t) t ≥ 0

The unconstrained minimum of g(λ, t) as a function of λ is at λ∗ = t/ν2. If (λ∗ < 1/α ⇐⇒ t < ν2/α) then

λ∗ is also the constrained minimum and g∗(t) = −t2
2ν2 .

If λ∗ ≥ 1/α, notice that g(λ, t) is ↘ in (0, λ∗). It is a continuous function so constraining happens at the
boundary. By continuity the constrained minimum occurs at the boundary λ∗ = 1/α.

So, g∗(t) = g(λ∗, t) = −t
α + ν2

2α2 ≤ −t2α because ν2

α ≤ t.

3.4 Bernstein Condition

Let X be such that E[X] = µ, v[X] = σ2.

X satisfies the bernstein condition with parameter b > 0 if k=3, 4, 5, ...

E[ |X − µ|k] ≤ 1
2 k! σ2 bk−2

This gives us a bound on the centered moments of a random variable. Note that all bounded variables
satisfy this condition. We’ll see that the bernstein condition can be tighter than Hoeffding and often more
applicable.

Theorem 3.2 If X satisfies the Bernstein condition with parameter b, then

E[eλ(X−µ)] ≤ e
λ2σ2

2
1

1−b|λ| |λ| < 1
b

X ∈ SE(
√

2σ, 2b)

P(|X − µ| ≥ t) ≤ e
−t2

2(σ2+bt) t ≥ 0
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Under the bernstein condition, we see that it is sub-exponential and can use the bounds from before (Theorem
3.1), but we also get this new bound.

Proof: Given that all of the moments exist, and are well defined we get that

E[eλ(X−µ)] = 1 +
λ2σ2

2
+

∞∑
k=3

E
[
(X − µ)k

]
k!

λk

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ| b)k−2
∞∑
k=0

Xk =
1

1−X
for|X| < 1

for |λ| < 1/b we can evaluate the geometric series

≤ 1 +
λ2σ2

2

1

1− b|λ|
[1 + x ≤ ex] x ∈ R

Note: all of these proofs are about bounds!!

≤ e
λ2σ2

2
1

1−b|λ|

——–——–

If we further restrict |λ| < 1/2b, we get

E[eλ(X−µ)] ≤ eλ
2σ2

= e
λ2(
√

2σ)2

2

=⇒ X ∈ SE(ν =
√

2σ, 2b)

To get our final result, we set λ = 2
bt+σ2 in the chernoff argument.

If σ2 � t the bound is e−t. If σ2 � t the bound is e−t
2

.

Hoeffding doesn’t take into consideration the variance, so the top bound can sometimes be better than the
bottom. We use the variance term as a quantity that can get us better results.

Note: This bernstein condition proof isn’t as in depth as it could be. Another useful version is where
σ2 = V [x] and |X − µ| ≤ c a.e.

P(|X − µ| ≥ t) ≤ 2e
−t2

2(σ2+ c
3
t) t ≥ 0

If we have a composition of sub-exponential variables X1 · · ·Xn which are independent and ∈ SE(νi, αi) it
is easy to see that

∑n
i=1Xi is also sub-exponential where α∗ = max(αi) and ν∗ =

√∑n
i=1 ν

2
i .

If they are not independent, then ν∗ =
∑n
i=1 ν

2
i which isn’t as good, but still sub-exponential.

Upper tail bound:

P
(∑

(xi − µi)
n

≥ t
)
≤

 2e
−nt2

2(ν2∗/n) t <
ν2
∗
α∗

2e
−nt
2α∗ t ≥ ν2

∗
α∗

Exercise:

Z
iid∼ N(0, 1) , Y =

∑n
i=1 Z

2
i ∼ χ2

n

Z2
i ∈ SE(2, 4), Y ∈ SE(2

√
n, 4)
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P(|Y/n− 1| ≥ t) ≤ 2e−nt
2/8 t ∈ (0, 1)

*probability an average exceeds a value*

Note on homework 1: |X| =
∑

(xi−µi)
n in P(|X| ≥ t) ≤ c1e−c2nt

α

3.5 Next topic

• One more concentration inequality

• Maxima

Useful links

http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf

http://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/4notes.pdf

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

https://en.wikipedia.org/wiki/Chernoff_bound

http://www.cs.cornell.edu/~sridharan/concentration.pdf

https://en.wikipedia.org/wiki/Concentration_inequality

http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
http://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/4notes.pdf
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound
http://www.cs.cornell.edu/~sridharan/concentration.pdf
https://en.wikipedia.org/wiki/Concentration_inequality
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