
36-755: Advanced statistics Fall 2016

Lecture 13: October 12
Lecturer: Alessandro Rinaldo Scribes: Jackie Mauro

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

13.1 PCA

Even if we can estimate eigenvalues well, it can be very hard to estimate eigenvectors.

Let E and F be d-dimensional linear subspaces in Rp (if they have different dimensions, just take d to be
the smaller one).

Let PE and PF be orthogonal projection matrices onto E and F .

If E and F are 1-dimensional, spanned by vE and vF ∈ Sp−1, we can measure their distance by looking at
the angle between vE and vF :

∠(vE , vF ) = cos−1(|vE , vF |)

Notes: we need to normalize to the unit norm and the use of absolute value is because we are only looking
at the acute angle.

For the subspaces E and F , let E and F be p × d matrices with orthonormal columns and range(E) = E ,
range(F ) = F .

PE = EET

PF = FFT

The k-th principal or canonical angle between E and F , k = 1, . . . , d is defined as:

cos−1

 max
x∈E
||x||=1

max
y∈F
||y||=1

|xT y|

 = cos−1
(
|xTk yk|

)

with xTi xi = yTi yi = 0, i = 1, · · · , k − 1.

Definition 13.1 SVD for Principal/canonical angles. The principal or canonical angles between E and F
are:

θ1 = cos−1(σ1), · · · , θd = cos−1(σd) (13.1)

where σ1 ≥ σ2 ≥ · · ·σd ∈ [0, 1] are the singular values of ETF or FTE (doesn’t matter).
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ETF = UcosΘvT (13.2)

where

Θ =


θ1 0 . . .
0 θ2 . . .
...

...
. . .

. . . 0 θd


We can equivalently define the principal or canonical angles as

θk = sin−1(sk), k = 1, . . . , d

where sk’s are the singular values of PE(I − PF ) = PEP
⊥
F = UsinΘvT . Follows from CS decomposition

(Stewart & Jun 1990)

Definition 13.2 The distance between E and F is:

||sinΘ(E ,F)||F

This is actually a metric between d-dimensional subspaces.

In particular:

||sinΘ(EF)||2F = ||PEP⊥F ||2F

=
1

2
||PEPF ||2F

Recall: P⊥F = Ip − PF

So this is one way to define the distance between two subspaces.

Theorem 13.3 Davis - Kahan sinθ theorem
See [YWS14]. Let Σ and Σ̂ be p× p symmetric matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp and λ̂1 ≥ λ̂2 ≥
· · · ≥ λ̂p respectively.

Let 1 ≤ r < s ≤ p and d = s− r + 1.

Let V and V̂ be p× d matrices with columns given by eigenvectors of Σ and Σ̂ corresponding to λj and λ̂j,

j = r, · · · , s. By construction, V and V̂ have orthonormal columns.

Let δ = {inf |λλ̂|, λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̂s+1] ∪ [λ̂r−1,∞)}

λ̂0 = −∞, λ̂p+1 =∞ by convention.

If δ > 0 (meaning there is an eigengap), then:

||sinΘ(E ,F)||F ≤
||Σ̂− Σ||F

δ

Where E = range(v), and F = range(V̂ )
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The same inequality holds for the operator norm || · ||op and for any unitarialy innvariant matrix norm:

|||A||| = |||OAUT |||

How do we use this in practice? Assume that ||Σ− Σ̂||op ≤ γn with high probability and:

| ˆλs+1 − λs| ≥ λs − λs+1 − γn > 0

| ˆλr−1 − λr| ≥ λr−1 − λr − γn > 0

Then Davis - Kahan gives:

||sinΘ|| ≤ ||Σ− Σ̂||
δ∗ − γn

where δ∗ = min{λs − λs+1, λr−1 − λr}

Typically r = 1, s = d < p which gives δ∗ = λd − λd+1 the eigengap.

λd+1 is the first eigenvalue we are not interested in. If it is too close to the ones we are interested in, it will
contaminate them and we can’t tell them apart.

If γn→ 0, δ∗ − γn ≥ δ
2 for n large. The improvement by Yu, Wang and Samworth [YWS14] is:

||sinΘ(E ,F)||F ≤
2min{

√
d||Σ̂− Σ||op, ||Σ̂− Σ||F }

min{λs − λs+1, λr−1 − λr}

Application: Spiked Covariance Model

Σ = θvvT + Ip, θ > 0, v ∈ Sp−1.

The eigenvalues of Σi are (1 + θ, 1, · · · , 1) (p-1 coordinates equal to 1).

θ is the eigengap.

If X1, · · · , Xn
iid∼ (0,Σi), Xi ∈ SGp(||Σi||op).

Let v̂ be the largest eigenvector of Σ̂ = 1
n

∑n
i=1XiX

T
i .

Let v be the leading eigenvector of Σ. Then:

min
ε∈{−1,1}

||εv̂ − v||2 = 2− 2|vT v|

≤ 2− 2(v̂T v)2

= 2sin2(∠(v̂, v))

= ||v̂vT − vvT ||2F

Then by Davis-Kahan (modified):

min
ε∈{−1,1}

||εv̂ − v||2 ≤
√

8

θ2
||Σ− Σ̂||2op

.
1 + θ

θ
max{

√
p+ log(1/δ)

n
,
d+ log(1/δ)

n
}
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Comes from our previous result on ||Σ− Σ̂||op

13.2 Sparse PCA

Σ = θvvT + Ip with θ > 0, v ∈ Sp−1, ||v||0 = k ≤ d/2. Task: estimate v using v̂, the solution to:

max
u∈Sp−1

||u||0≤k′≤d/2

uT Σ̂u

Note: this is not computationally feasible.

Theorem 13.4 Assume X1, · · · , Xn
iid∼ (0,Σ), Xi ∈ SG(||Σ||op). Then:

minε∈{−1,1}||v̂ε− v||2 .
1 + θ

θ
max{A,

√
A}

For A = [(k + k′)log ep
k+k′ + log( 1

δ )] 1n

Proof: we have that:

vTΣv − v̂TΣv̂ = θ(1− cos2(∠(v, v̂)))

= θ sin2(∠(v, v̂))

Next:

vTΣv − v̂TΣv̂ = vT Σ̂v − v̂Σv̂ − vT (Σ̂− Σ)v

≤ v̂T Σ̂v̂ − v̂Σv̂ − vT (Σ̂− Σ)v

= v̂T (Σ̂− Σ)v̂ − vT (Σ̂− Σ)v
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