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9.1 Lasso

Consider a regression framework where Y is an n× 1 vector, X is a n× d matrix, θ∗ is a d× 1 vector, and ε is a n× 1
vector. Further assume that

Y = Xθ∗ + ε

with ε ∈ SGn(σ2). In the LASSO, we use estimate θ̂ to estimate θ, where θ̂ us the solution to

θ̂ ∈ argminθ∈Rd

(
1

2n
||Y −Xθ||2 + λn||θ||1

)
. (9.1)

Equation (1) defines a convex optimization problem that produces sparse solutions depending on λn. The parameter
λn is chosen by the user. It can be thought of as λ(n, d, σ) because the choice will depend on those values.

Equation (1) has solutions for both d ≤ n and d > n. There can be multiple optimal solution θ̂, but the maximizing
value Xθ̂ is unique. For a discussion of the uniqueness of solutions to the Lasso problem, see [1].

The basic inequality [2] is a useful inequality for proving results pertaining to the Lasso. It is given below as Lemma
1.1. It is used to prove Theorem 1.2.

Lemma 9.1. In the Lasso set-up, if θ∗ is the true parameter value and θ̂ is the lasso solution, then

1

2n

∣∣∣∣∣∣X(θ̂ − θ∗)
∣∣∣∣∣∣2 ≤ εT X(θ̂ − θ∗)

n
+ λn(||θ∗||1 − ||θ̂||1).

Proof.

1

2n

(
||ε||2 +

∣∣∣∣∣∣X(θ̂ − θ∗)
∣∣∣∣∣∣2 − 2εTX(θ̂ − θ∗)

)
+ λn||θ̂||1 =

1

2n

∣∣∣∣∣∣ε−X(θ̂ − θ∗)
∣∣∣∣∣∣2 + λn||θ̂||1

=
1

2n

∣∣∣∣∣∣Y −Xθ̂∣∣∣∣∣∣2 + λn||θ̂||1

≤ 1

2n
||Y −Xθ∗||2 + λn ||θ∗||1

=
1

2n
||ε||2 + λn ||θ∗||1
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Theorem 9.2. If

λn ≥
∣∣∣∣∣∣∣∣XT ε

n

∣∣∣∣∣∣∣∣
∞

= maxJ=1,...,d

∣∣∣∣XT
J ε

n

∣∣∣∣ ,
then any Lasso solution satisfies ∣∣∣∣∣

∣∣∣∣∣X(θ̂ − θ∗)
n

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4 ||θ∗||1 λn.

Proof. Lemma 1.1 provides

1

2n

∣∣∣∣∣∣X(θ̂ − θ∗)
∣∣∣∣∣∣2 ≤ εT X(θ̂ − θ∗)

n
+ λn(||θ∗||1 − ||θ̂||1) by Basic inequality (Lemma 1.1)

≤ 1

n

∣∣∣∣XT ε
∣∣∣∣
∞

∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣
1

+ λn(||θ∗||1 − ||θ̂||1) by Holder Inequality

≤ 1

n

∣∣∣∣XT ε
∣∣∣∣
∞

(
||θ∗||1 + ||θ̂||1

)
+ λn(||θ∗||1 − ||θ̂||1) by Triangle Inequality

≤
(

1

n

∣∣∣∣XT ε
∣∣∣∣
∞ − λn

)
||θ̂||1 +

(
1

n

∣∣∣∣XT ε
∣∣∣∣
∞ + λn

)
||θ̂||1

≤ 2λn||θ∗||1.

What is a good choice for λn?
Recall that ε ∈ SG(σ2) and assume maxJ=1...D||XJ || ≤ C

√
n for some C > 0. Then for t > 0,

P
(∣∣∣∣∣∣∣∣εTXn

∣∣∣∣∣∣∣∣
∞
≥ t
)
≤ P

(
maxJ |XT

J ε| ≥ tn
)

≤
∑
J

P
(
|XT

J ε| ≥ tn
)

≤
∑
J

P
(
|XT

J ε|
||XJ ||

≥ tn

||XJ ||

)
≤ 2d exp

(
−t2n

2σ2max||XJ ||2

)
by Subgaussianity

≤ 2d exp

(
−t2n

2σ2C2

)
because ||XJ ||2 < C2n

≤ δ

if we choose

t = λn =

√
2σ2C2

n

(
log

(
1

δ

)
+ log (2d)

)
.

Consider δ = 1/n. Then with probability 1− 1/n,

∣∣∣∣∣∣X(θ̂ − θ∗)
∣∣∣∣∣∣2

n
≤ ||θ∗||1

√
2σ2C (log (n) + log (2d))

n
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If d ≤ n and λmin(XTX/n) ≥ Cmin > 0. Then you can also get a bound for∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2 ≤ ||θ∗||
cminλn

9.2 Getting Fast Rates for Lasso

In order to get “fast” rates for the lasso, there needs to be additional assumptions on X . These assumptions also
provide consistency of estimation of θ.

A very useful condition is the restricted eigenvalue condition. In order to define the condition, we need to establish
some notation. For S ⊂ {1, 2, . . . , d} and α > 0, define

C(α, S) =
{

∆ ∈ Rd : ||∆Sc ||1 ≤ α ||∆S ||1
}
.

Definition 9.3. X satisfies the restricted eigenvalue (RE(α, κ)) condition over S = {1, . . . , d} 6= ∅ if

1

n
||X∆||2 ≥ κ ||∆||2 for all ∆ ∈ C(α, S).

For intuition, think of ∆ as θ̂ − θ∗. We want ||X∆||2 /n to be small. Note that if it is, this does necessarily mean that
||∆||2 is small. Especially if

∆→ ||X∆||2

n
(9.2)

is flat around θ̂ − θ∗. To prevent this, we need the function (9.2) to be very curved. This is true if

||X∆||2

n
≥ κ ||∆||2 for all ∆ ∈ Rd.

Unfortunately, this implies that λmin(XTX) ≥ Cmin > 0 if d > n, which is not possible. Instead, we consider the
case where function (9.2) is curved only along certain directions.

These directions are C(α, S) where S is defined by the support of θ∗. That is, s = {J : θ∗J 6= 0}.

Theorem 9.4. Assume that

• the support of θ∗ is S where |S| = s > 0.

• X satisfies RE(3, κ) where κ > 0 with respect to S.

• λn ≥ 2
∣∣∣∣εTX∣∣∣∣ /n.

Then any Lasso solution θ̂ satisfies
1

n

∣∣∣∣∣∣X (θ̂ − θ∗)∣∣∣∣∣∣2 ≤ 9λ2nsκ,

and ∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣ ≤ 3

κ

√
sλn.
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Proof. First, we show that given our choice λn, ∆̂ = (θ̂ − θ∗) ∈ C(3, S). By the Basic inequality,

0 ≤ 1

2n

∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣2 ≤ εTX∆

n
+ λn[||θ∗||1 − ||θ̂||1].

Since θ∗ is S-sparse, we know

||θ∗||1 − ||θ̂||1 = ||θ∗S ||1 −
∣∣∣∣∣∣θ∗S + ∆̂S

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣θ̂Sc

∣∣∣∣∣∣
1

= ||θ∗S ||1 −
∣∣∣∣∣∣θ∗S + ∆̂S

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣∆̂Sc

∣∣∣∣∣∣
1
.

Plugging this into the Basic inequality yields:

0 ≤ 1

2n

∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣2

≤ 2

∣∣∣∣XT ε
∣∣∣∣
∞

n
||∆̂||1 + 2λn

(
||θ∗S ||1 − ||θ∗S + ∆̂S ||1 − ||∆̂Sc ||1

)
≤ 2

∣∣∣∣XT ε
∣∣∣∣
∞

n
||∆̂||1 + 2λn

(
||∆̂S ||1 − ||∆̂Sc ||1

)
By triangle inequality

≤ λn||∆̂S ||1 + λ)n||∆̂Sc ||1 + 2λn||∆̂S ||1 − 2λn||∆̂Sc ||1

= λn

(
3||∆̂S ||1 − ||∆̂Sc ||1

)
⇒ ∆̂ ∈ C(3, S).

Note that the fourth line used the fact

λn ≥
2
∣∣∣∣XT ε

∣∣∣∣
∞

n
.
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