36–755 Advanced Statistical Theory Fall 2016

Lecture 9: September 28th, 2016

Lecturer: Alessandro Rinaldo <arinaldo@cmu.edu>

Scribe: Neil Spencer

Carnegie Mellon University

Department of Statistics

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

9.1 Lasso

Consider a regression framework where Y is an $n \times 1$ vector, X is a $n \times d$ matrix, θ^* is a $d \times 1$ vector, and ϵ is a $n \times 1$ vector. Further assume that

$$Y = X\theta^* + \epsilon$$

with $\epsilon \in SG_n(\sigma^2)$. In the LASSO, we use estimate $\hat{\theta}$ to estimate θ , where $\hat{\theta}$ us the solution to

$$\hat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left(\frac{1}{2n} ||Y - X\theta||^2 + \lambda_n ||\theta||_1 \right).$$
(9.1)

Equation (1) defines a convex optimization problem that produces sparse solutions depending on λ_n . The parameter λ_n is chosen by the user. It can be thought of as $\lambda(n, d, \sigma)$ because the choice will depend on those values.

Equation (1) has solutions for both $d \le n$ and d > n. There can be multiple optimal solution $\hat{\theta}$, but the maximizing value $X\hat{\theta}$ is unique. For a discussion of the uniqueness of solutions to the Lasso problem, see [1].

The basic inequality [2] is a useful inequality for proving results pertaining to the Lasso. It is given below as Lemma 1.1. It is used to prove Theorem 1.2.

Lemma 9.1. In the Lasso set-up, if θ^* is the true parameter value and $\hat{\theta}$ is the lasso solution, then

$$\frac{1}{2n} \left| \left| X(\hat{\theta} - \theta^*) \right| \right|^2 \le \epsilon^T \frac{X(\hat{\theta} - \theta^*)}{n} + \lambda_n(||\theta^*||_1 - ||\hat{\theta}||_1).$$

Proof.

$$\begin{aligned} \frac{1}{2n} \left(||\epsilon||^2 + \left| \left| X(\hat{\theta} - \theta^*) \right| \right|^2 - 2\epsilon^T X(\hat{\theta} - \theta^*) \right) + \lambda_n ||\hat{\theta}||_1 &= \frac{1}{2n} \left| \left| \epsilon - X(\hat{\theta} - \theta^*) \right| \right|^2 + \lambda_n ||\hat{\theta}||_1 \\ &= \frac{1}{2n} \left| \left| Y - X\hat{\theta} \right| \right|^2 + \lambda_n ||\hat{\theta}||_1 \\ &\leq \frac{1}{2n} \left| \left| Y - X\theta^* \right| \right|^2 + \lambda_n \left| \left| \theta^* \right| \right|_1 \\ &= \frac{1}{2n} \left| |\epsilon||^2 + \lambda_n \left| |\theta^*| \right|_1 \end{aligned}$$

Theorem 9.2. If

$$\lambda_n \ge \left\| \left| \frac{X^T \epsilon}{n} \right| \right\|_{\infty} = \max_{J=1,\dots,d} \left| \frac{X_J^T \epsilon}{n} \right|,$$

then any Lasso solution satisfies

$$\left| \left| \frac{X(\hat{\theta} - \theta^*)}{n} \right| \right|^2 \le 4 \left| \left| \theta^* \right| \right|_1 \lambda_n.$$

Proof. Lemma 1.1 provides

$$\begin{split} \frac{1}{2n} \left| \left| X(\hat{\theta} - \theta^*) \right| \right|^2 &\leq \epsilon^T \frac{X(\hat{\theta} - \theta^*)}{n} + \lambda_n (||\theta^*||_1 - ||\hat{\theta}||_1) \text{ by Basic inequality (Lemma 1.1)} \\ &\leq \frac{1}{n} \left| \left| X^T \epsilon \right| \right|_{\infty} \left| \left| \hat{\theta} - \theta^* \right| \right|_1 + \lambda_n (||\theta^*||_1 - ||\hat{\theta}||_1) \text{ by Holder Inequality} \\ &\leq \frac{1}{n} \left| \left| X^T \epsilon \right| \right|_{\infty} \left(||\theta^*||_1 + ||\hat{\theta}||_1 \right) + \lambda_n (||\theta^*||_1 - ||\hat{\theta}||_1) \text{ by Triangle Inequality} \\ &\leq \left(\frac{1}{n} \left| \left| X^T \epsilon \right| \right|_{\infty} - \lambda_n \right) ||\hat{\theta}||_1 + \left(\frac{1}{n} \left| \left| X^T \epsilon \right| \right|_{\infty} + \lambda_n \right) ||\hat{\theta}||_1 \\ &\leq 2\lambda_n ||\theta^*||_1. \end{split}$$

What is a good choice for λ_n ?

Recall that $\epsilon \in SG(\sigma^2)$ and assume $\max_{J=1...D} ||X_J|| \le C\sqrt{n}$ for some C > 0. Then for t > 0,

$$\begin{split} \mathbb{P}\left(\left|\left|\frac{\epsilon^{T}X}{n}\right|\right|_{\infty} \geq t\right) &\leq \mathbb{P}\left(\max_{J}|X_{J}^{T}\epsilon| \geq tn\right) \\ &\leq \sum_{J} \mathbb{P}\left(|X_{J}^{T}\epsilon| \geq tn\right) \\ &\leq \sum_{J} \mathbb{P}\left(\frac{|X_{J}^{T}\epsilon|}{||X_{J}||} \geq \frac{tn}{||X_{J}||}\right) \\ &\leq 2d \exp\left(\frac{-t^{2}n}{2\sigma^{2}\max||X_{J}||^{2}}\right) \text{ by Subgaussianity} \\ &\leq 2d \exp\left(\frac{-t^{2}n}{2\sigma^{2}C^{2}}\right) \text{ because } ||X_{J}||^{2} < C^{2}n \\ &\leq \delta \end{split}$$

if we choose

$$t = \lambda_n = \sqrt{\frac{2\sigma^2 C^2}{n} \left(\log\left(\frac{1}{\delta}\right) + \log\left(2d\right)\right)}.$$

Consider $\delta = 1/n$. Then with probability 1 - 1/n,

$$\frac{\left|\left|X(\hat{\theta} - \theta^*)\right|\right|^2}{n} \le \left|\left|\theta^*\right|\right|_1 \sqrt{\frac{2\sigma^2 C \left(\log\left(n\right) + \log\left(2d\right)\right)}{n}}$$

If $d \leq n$ and $\lambda_{\min}(X^T X/n) \geq C_{\min} > 0$. Then you can also get a bound for

$$\left|\left|\hat{\theta} - \theta^*\right|\right|^2 \le \frac{\left|\left|\theta^*\right|\right|}{c_{\min}\lambda_n}$$

9.2 Getting Fast Rates for Lasso

In order to get "fast" rates for the lasso, there needs to be additional assumptions on X. These assumptions also provide consistency of estimation of θ .

A very useful condition is the *restricted eigenvalue condition*. In order to define the condition, we need to establish some notation. For $S \subset \{1, 2, ..., d\}$ and $\alpha > 0$, define

$$C(\alpha, S) = \left\{ \Delta \in \mathbb{R}^d : \left\| \Delta_{S^c} \right\|_1 \le \alpha \left\| \Delta_S \right\|_1 \right\}.$$

Definition 9.3. X satisfies the restricted eigenvalue ($RE(\alpha, \kappa)$) condition over $S = \{1, \ldots, d\} \neq \emptyset$ if

$$\frac{1}{n} \left| \left| X \Delta \right| \right|^2 \ge \kappa \left| \left| \Delta \right| \right|^2 \text{ for all } \Delta \in C(\alpha, S).$$

For intuition, think of Δ as $\hat{\theta} - \theta^*$. We want $||X\Delta||^2 / n$ to be small. Note that if it is, this does necessarily mean that $||\Delta||^2$ is small. Especially if

$$\Delta \to \frac{\left|\left|X\Delta\right|\right|^2}{n} \tag{9.2}$$

is flat around $\hat{\theta} - \theta^*$. To prevent this, we need the function (9.2) to be very curved. This is true if

$$\frac{\left|\left|X\Delta\right|\right|^{2}}{n} \geq \kappa \left|\left|\Delta\right|\right|^{2} \text{ for all } \Delta \in \mathbb{R}^{d}.$$

Unfortunately, this implies that $\lambda_{\min}(X^T X) \ge C_{\min} > 0$ if d > n, which is not possible. Instead, we consider the case where function (9.2) is curved only along certain directions.

These directions are $C(\alpha, S)$ where S is defined by the support of θ^* . That is, $s = \{J : \theta_J^* \neq 0\}$.

Theorem 9.4. Assume that

- the support of θ^* is S where |S| = s > 0.
- X satisfies $RE(3, \kappa)$ where $\kappa > 0$ with respect to S.
- $\lambda_n \geq 2 \left| \left| \epsilon^T X \right| \right| / n.$

Then any Lasso solution $\hat{\theta}$ satisfies

$$\frac{1}{n} \left| \left| X \left(\hat{\theta} - \theta^* \right) \right| \right|^2 \le 9\lambda_n^2 s\kappa,$$
$$\left| \left| \hat{\theta} - \theta^* \right| \right| \le \frac{3}{\kappa} \sqrt{s} \lambda_n.$$

and

Proof. First, we show that given our choice λ_n , $\hat{\Delta} = (\hat{\theta} - \theta^*) \in C(3, S)$. By the Basic inequality,

$$0 \le \frac{1}{2n} \left| \left| X \hat{\Delta} \right| \right|^2 \le \frac{\epsilon^T X \Delta}{n} + \lambda_n [||\theta^*||_1 - ||\hat{\theta}||_1].$$

Since θ^* is S-sparse, we know

$$\begin{split} ||\theta^*||_1 - ||\hat{\theta}||_1 &= ||\theta^*_S||_1 - \left|\left|\theta^*_S + \hat{\Delta}_S\right|\right|_1 - \left|\left|\hat{\theta}_{S^c}\right|\right|_1 \\ &= ||\theta^*_S||_1 - \left|\left|\theta^*_S + \hat{\Delta}_S\right|\right|_1 - \left|\left|\hat{\Delta}_{S^c}\right|\right|_1. \end{split}$$

Plugging this into the Basic inequality yields:

$$\begin{split} 0 &\leq \frac{1}{2n} \left| \left| X \hat{\Delta} \right| \right|^2 \\ &\leq 2 \frac{\left| \left| X^T \epsilon \right| \right|_{\infty}}{n} || \hat{\Delta} ||_1 + 2\lambda_n \left(|| \theta_S^* ||_1 - || \theta_S^* + \hat{\Delta}_S ||_1 - || \hat{\Delta}_{S^c} ||_1 \right) \\ &\leq 2 \frac{\left| \left| X^T \epsilon \right| \right|_{\infty}}{n} || \hat{\Delta} ||_1 + 2\lambda_n \left(|| \hat{\Delta}_S ||_1 - || \hat{\Delta}_{S^c} ||_1 \right) \text{ By triangle inequality} \\ &\leq \lambda_n || \hat{\Delta}_S ||_1 + \lambda) n || \hat{\Delta}_{S^c} ||_1 + 2\lambda_n || \hat{\Delta}_S ||_1 - 2\lambda_n || \hat{\Delta}_{S^c} ||_1 \\ &= \lambda_n \left(3 || \hat{\Delta}_S ||_1 - || \hat{\Delta}_{S^c} ||_1 \right) \\ &\Rightarrow \hat{\Delta} \in C(3, S). \end{split}$$

Note that the fourth line used the fact

$$\lambda_n \ge \frac{2 \left| \left| X^T \epsilon \right| \right|_\infty}{n}.$$

References

[1] Ryan J Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456–1490, 2013.

[2] Sara A Van de Geer. Applications of empirical process theory, volume 91. Cambridge University Press Cambridge, 2000.