36-755: Advanced statistics

Fall 2016

Lecture 7: September 21

Lecturer: Alessandro Rinaldo Scribes: Jackie Mauro

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Recap: covariance matrix estimation

For A an $m \times n$ matrix, take $A = UDV^T$. U, V orthonormal columns, D diagonal. Then:

$$\begin{split} \sigma_{max} &= \max_{x \in \mathbb{S}^{n-1}} ||Ax|| \text{ (largest singular value)} \\ &= \max_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{||Ax||}{||x||} \\ &= \max_{\substack{x \in \mathbb{S}^{n-1} \\ y \in \mathbb{S}^{n-1}}} |y^T Ax| \end{split}$$

If A $(n \times n)$ is symmetric, $\sigma_{max}(A) = \max_{x \in \mathbb{S}^{n-1}} |x^T A x|$.

If A $(n \times n)$ is PSD, $\sigma_{max}(A) = \max_{x \in \mathbb{S}^{n-1}} x^T A x$, the largest eigenvalue of A.

For a generic A $(m \times n)$, $\sigma_{max}(A)$ also called the "operator norm". $||A||_{op}$ is the L_{∞} norm of its singular values.

 $|A||_F = \sqrt{\sum_{i,j} A_{ij}^2}$ is the "Frobenius" norm. It is the L_2 norm over the singular values.

Nuclear norm of A: $\sum_{i} \sigma_{i}$, the L_{1} norm of the singular values.

7.2 Operator Norm

Take A, B to be $m \times n$ matrices.. If $||A - B||_{op} \to 0$ then $|y^T A x - y^T B x| \to 0$ uniformly over $x \in \mathbb{S}^{n-1}, y \in \mathbb{S}^{n-1}$. And this implies $\max_{i,j} |A_{ij} - B_{ij}| \to 0$.

If Σ is the covariance matrix and $\hat{\Sigma}$ an estimator of it (both PSD), then:

$$\begin{split} ||\Sigma - \hat{\Sigma}||_{op} &\to 0 \\ \Rightarrow \max_{v \in \mathbb{S}^{n-1}} |v^T \Sigma v - v^T \hat{\Sigma} v| &\to 0 \\ \Rightarrow \max_{v \in \mathbb{S}^{n-1}} |\mathbb{V}(v^T X) - \mathbb{V}(v^T \tilde{X})| &\to 0 \end{split}$$

Where $X \sim (\mu, \Sigma)$ and $\tilde{X} \sim (\tilde{\mu}, \hat{\Sigma})$.

7.3 Weyl Inequality

A, B are $m \times n$ with singular values:

$$\sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_{\min(n,m)}(A)$$

 $\sigma_1(B) \ge \sigma_2(B) \ge \cdots \ge \sigma_{\min(n,m)}(B)$

 $\Rightarrow \max_{k=1,\dots,min(m,n)} |\sigma_k(A) - \sigma_k(B)| \le ||A - B||_{op} = \sigma_{max}(A - B)$

Recall: a random vector $X \in SG(\sigma^2)$ if:

$$\mathbb{E}(e^{\lambda v^T X}) \le e^{\frac{\lambda \sigma^2}{2}} \tag{7.1}$$

then $X \in SG_d(\sigma^2)$ if its coordinates are independent $SG(\sigma^2)$ or $X \sim N_d(0, \Sigma)$ with $\sigma^2 = ||\Sigma||_{op}$ because:

$$\mathbb{V}(v^T X) = v^T \Sigma v \Rightarrow \max_{v \in \mathbb{S}^{d-1}} (v^T \Sigma v) = ||\Sigma||_{op}$$
(7.2)

Theorem 7.1 If $X_1, \dots, X_n \stackrel{iid}{\sim} (0, \Sigma)$ in \mathbb{R}^d and $\in SG(\sigma^2)$, then, setting

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T \tag{7.3}$$

there exists a constant c > 0 such that:

$$\mathbb{P}(||\Sigma - \hat{\Sigma}||_{op} \le \sigma^2 C \min\{\sqrt{\frac{d + \log(2/\delta)}{n}}, \frac{d + \log(2/\delta)}{n}\}) \ge 1 - \delta$$
(7.4)

for $\delta \in (0,1)$

This implies that if $\Sigma = I, \sigma^2 = 1$ then:

$$||\hat{\Sigma} - I||_{op} \le \sqrt{\frac{d}{n}} + \frac{d}{n} \tag{7.5}$$

with high probability

Consistency requires d = o(n). Unless you make sparsity assumptions on Σ you must have d grow slowly with n.

Proof: The proof uses a discretization argument. Operator norm is the max over an infinite set, so we need to discretize. Take $X \in SG(\sigma^2), X - E(X^2) \in SE(\nu^2, \alpha), \nu = \alpha = 16\sigma^2$.

We also need the discretization lemma:

Lemma 7.2 Let A $(n \times n)$ symmetric (will eventually be $\Sigma - \hat{\Sigma}$) and \mathcal{N}_{ϵ} be an ϵ -net of \mathbb{S}^{n-1} . Then

$$||A||_{op} = \max_{x \in \mathbb{S}^{n-1}} |x^T A x| \le (1 - 2\epsilon)^{-1} \max_{y \in \mathcal{N}_{\epsilon}} (y^T A y)$$
 (7.6)

Proof: Let $x^* \in \mathbb{S}^{n-1}$ st $||A||_{op} = |x^{*T}Ax^*|$. Let $y \in \mathcal{N}_{\epsilon}$ st $||x^* - y|| \le \epsilon$. Then:

$$\begin{array}{lll} |x^TAx^*-y^TAy| & = & |x^TA(x^*-y)+y^TA(x^*-y)| \text{ by symmetry} \\ & \leq & |x^TA(x^*-y)|+|y^TA(x^*-y)| \\ & \leq & ||x^*||A(x^*-y)|+||y||||A(x^*-y)| \\ & \leq & 2||A||_{op}||x^*-y|| \\ & \leq & 2\epsilon||A||_{op} \end{array}$$

Where the second to last inequality follows from $||Az|| \leq ||A||_{op}||z||$.

This gives:

$$|y^T A y| \ge |x^{*T} A x^*| - 2\epsilon ||A||_{op}$$
 (7.7)

$$\Rightarrow ||A||_{op} \leq \frac{1}{1 - 2\epsilon} |y^T A y| \tag{7.8}$$

$$\leq \frac{1}{1 - 2\epsilon} \max_{y \in \mathbb{S}^{n-1}} |y^T A y| \tag{7.9}$$

Now set $A = \hat{\Sigma} - \Sigma$ ($d \times d$ and symmetric) and consider $\mathcal{N}_{\frac{1}{4}}$ a 1/4 - net of \mathbb{S}^{d-1} , then:

$$||\hat{\Sigma} - \Sigma||_{op} = ||A||_{op} \le 2 \max_{i} |v_i^T A v_i|$$
 (7.10)

where $\{v_i, \dots, v_n\} = \mathcal{N}_{\frac{1}{4}}$. Note that $|\mathcal{N}_{\frac{1}{4}}| \leq 9^d$ because it is a volume calculation. So, $\forall t > 0$:

$$\begin{split} \mathbb{P}(||\hat{\Sigma} - \Sigma||_{op} \geq t) & \leq & \mathbb{P}(\max_{i} |v_{i}^{T}(\hat{\Sigma} - \Sigma)v_{i}| \geq t/2) \\ & \leq & \sum_{i \leq 9^{d}} \mathbb{P}(|v_{i}^{T}(\hat{\Sigma} - \Sigma)v_{i}| \geq t/2) \end{split}$$

for a fixed $v \in \mathbb{S}^{d-1}$,

$$v^{T}(\hat{\Sigma} - \Sigma)v = \frac{1}{n} \sum_{j=1}^{n} (v^{T}X_{i})^{2} - v^{T}\Sigma v$$
Note: $v^{T}\hat{\Sigma}v = v^{T}(\frac{1}{n} \sum_{j=1}^{n} X_{i}X_{i}^{T})v = \frac{1}{n} \sum_{j=1}^{n} v^{T}X_{i}X_{i}^{T}v = \frac{1}{n} \sum_{j=1}^{n} (v^{T}X_{i})^{2}$

$$= \frac{1}{n} \sum_{j=1}^{n} [Z_{i}^{2} - \mathbb{E}(Z_{i}^{2})]$$

where $Z_i = v^T X_i, \Sigma = \mathbb{E}(XX^T)$ We know $Z_i^2 - \mathbb{E}(Z_i^2) \in SE(\nu^2, \alpha), Z_i iid$. For each $v_i \in \mathcal{N}_{\frac{1}{4}}$, by Bernstein:

$$\mathbb{P}(|v_i(\hat{\Sigma} - \Sigma)v_i| \ge t/2) \le 2exp\{-\frac{n}{2}min\{(\frac{t}{32\sigma^2})^2, \frac{t}{32\sigma^2}\}\}(*)$$
(7.11)

Then:

$$\mathbb{P}(\frac{||\hat{\Sigma} - \Sigma||}{\sigma^2} \ge t) \le 2 \cdot 9^d \cdot (*)$$
set: $\le \delta$

$$\Rightarrow \frac{t}{32} \ge \sigma \min\{\frac{2}{n}dlog(9) + \frac{2}{n}log(2/\delta), \sqrt{\frac{2}{n}dlog(9) + \frac{2}{n}log(2/\delta)}\}$$

7.4 (Sparse) Linear Models

Setup: $Y = X\beta^* + \epsilon$, with $\epsilon_1, \dots, \epsilon_n$ independent $SG(\sigma^2)$

Generally, X is considered fixed [Buja15].

There are 2 settings we are interested in where d grows with n (or even d > n).

- Prediction
- Estimation

7.4.1 Prediction

Prediction or mean estimation. Suppose we observe a new batch of data \tilde{Y} and want to estimate β^* with $\hat{\beta}$ and we would like to predict Y as follows:

minimize:
$$\frac{1}{n}\mathbb{E}[||\tilde{Y} - X\hat{\beta}||^2]$$
 (7.12)

this is the same as minimizing $\frac{1}{n}\mathbb{E}[||X(\beta^* - \hat{\beta})||^2] + \mathbb{E}[||\epsilon||^2]$. So we minimize $\frac{1}{n}\mathbb{E}[MSE(X\hat{\beta})]$:

$$MSE(X\hat{\beta}) = ||X\beta^* - X\hat{\beta}||^2, \hat{\beta} = f(Y)$$

$$(7.13)$$

7.4.2 Parameter estimation

minimize $\mathbb{E}[||\beta^* - \hat{\beta}||^2]$

Prediction is simpler, because parameter estimation requires the true model

7.5 Least Squares in High Dimensions

Usual: $\hat{\beta}^{LS} = (X^T X)^{-1} X^T Y$ if $(X^T X)^{-1}$ exists. But $\hat{\beta}^{LS}$ is not defined if d > n or X is rank deficient (linearly dependent).

Still, you can find a solution to:

$$\min_{\beta \in \mathbb{R}^d} ||Y - X\beta||^2 \tag{7.14}$$

The function $\beta \to ||Y - X\beta||^2$ is convex.

To find its minimum, we set the gradient to zero:

$$\Rightarrow X^T X \beta = X^T Y \tag{7.15}$$

Any β satisfying this will be a minimum.

If $(X^TX)^{-1}$ does not exist, we have infinitely many solutionss. But if all we want is $X\beta$ (rather than β) we can take any such solution.

References

[Buja15] A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zhao and K. Zhang "Models as Approximations—A Conspiracy of Random Regressors and Model Deviation Against Classical Inference in Regression," *Submitted to Statistical Science*, 2015.