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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Recap: covariance matrix estimation

For A an m x n matrix, take A = UDV?”. U, V orthonormal columns, D diagonal. Then:

Omaz = MAX [|Az|| (largest singular value)
€T

|| Az]|
zeR” ||z]|
z#0

If A (nxn)is symmetric, omag(A) = max, g1 |27 Az].
If A (nxn)is PSD, 0pmaz(A) = max, g1z’ Az, the largest eigenvalue of A.

For a generic A (m X n), Oumaz(A) also called the ”operator norm”. ||A||op is the Lo, norm of its singular
values.

I[AllF = />0 A7} is the "Frobenius” norm. It is the Ly norm over the singular values.

Nuclear norm of A: ", 0y, the L; norm of the singular values.

7.2 Operator Norm

Take A, B to be m x n matrices.. If ||[A — B|,, — 0 then |y” Az — y” Bz| — 0 uniformly over x € S""!,y €
S”=1. And this implies mamij|Aij — B”‘ — 0.

If ¥ is the covariance matrix and 3 an estimator of it (both PSD), then:

1~ Zllop = 0
= max [wT'So — TS0 =0
veSn—1
= max VT X) = VETX)| =0
veS" T

Where X ~ (1, %) and X ~ (f1,%).
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7.3 Weyl Inequality

A, B are m x n with singular values:

01(A) = 02(A)
o01(B) > o9

= MaXg—1,... ,min(m,n) |Uk(A) - Uk(B)| < ||A - B||0p = O'ma;c(A - B)

Recall: a random vector X € SG(0?) if:

o2
E(e”\”TX) <e't (7.1)
then X € SG4(0?) if its coordinates are independent SG(c?) or X ~ Ny(0,¥) with o2 = ||X]|,, because:
VT'X)=vT%v = rré\%xl(vTEv) = ||Z]|op (7.2)
veESTT

Theorem 7.1 If X1, -, X, ud (0,%) in R? and € SG(0?), then, setting

L1
5= ;XiXiT (7.3)
there exists a constant ¢ > 0 such that:
B[S = $ljop < 02Cmin{y] F 105(2/5), dt l"g@/‘s) N>1-6 (7.4)
for 6 € (0,1)
This implies that if ¥ = I, 0? = 1 then:
A d d
12 = Illop </~ + (7.5)

with high probability

Consistency requires d = o(n). Unless you make sparsity assumptions on 3 you must have d grow slowly
with n.

Proof: The proof uses a discretization argument. Operator norm is the max over an infinite set, so we need
to discretize. Take X € SG(0?),X — E(X?) € SE(v?,a),v = a = 1602.

We also need the discretization lemma:
Lemma 7.2 Let A (n x n) symmetric (will eventually be ¥ — ) and N, be an e-net of S"~'. Then

[[Allop = max [a¥Az| < (1-2¢)7" max(y" Ay) (7.6)

Proof: Let z* € S"71 st ||A]|op = |2*T Az*|. Let y € N, st ||z* — y|| < e. Then:
leT Az — yT Ay|

leT A(z* —y) + y? A(z* — y)| by symmetry
T A(z* —y)| + |y A(z" — )]

lz"[[A(z" — )| + [lyll[|A(z" = y)]
2[[Alfopllz" = yl|

2¢||Allop

VAN VAN VAN VAN



Lecture 7: September 21 7-3

Where the second to last inequality follows from ||Az|| < ||A||opl]Z]]-

This gives:
" Ayl > |t Azt| = 2¢]|Alfop (7.7)
1
=All, < ——|yTA 7.8
1Allop = 75 lv" Ayl (7.8)
< max |yT Ayl (7.9)

1 — 2¢ yesn—1

Now set A =3 — % (d x d and symmetric) and consider ./\/% a 1/4 - net of S¥~1, then:
12 = Sllop = | Allop < 2max v Avi (7.10)
where {v;, -+, v,} = N1. Note that |N1] < 9¢ because it is a volume calculation. So, Vt > 0:
P(II% - Sllop 2 1) < P(max|v] (£~ S)vi| > /2)

< SRS - Dl > 1/2)

i<9d
for a fixed v € S,

vT(X—%)pw = (T X;)? —vTv

3=

<
Il
—_

1 n
T T § : T 2
v ;U n (’U )

j=1

Il
S

<
Il
—

. 1 &
Note: 0TS0 =0T (=Y X; X7
ote: v* 2w U(n; v

27 — E(Z7)]

Il
3=

Il
_

J

where Z; = vTX;, ¥ = E(XXT) We know Z? — E(Z2) € SE(v?, a), Z;iid. For each v; € N1, by Bernstein:

P05~ S)uil > 1/2) < 2eapl~ G min{( )% 25 1 (¥ (7.11)
Then :
pZ s < 20
set: < ¢
= s min{ 2 diog(9) + 2log(2/6), \/ 2 dlog(9) + Z10g(2/5)}
32 n n n n
| ]

7.4 (Sparse) Linear Models

Setup: Y = X3* + ¢, with €1, - , ¢, independent SG(o?)
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Generally, X is considered fixed [Bujal5).

There are 2 settings we are interested in where d grows with n (or even d > n).

e Prediction

e Estimation

7.4.1 Prediction

Prediction or mean estimation. Suppose we observe a new batch of data ¥ and want to estimate 3* with 3
and we would like to predict Y as follows:

1. .
minimize: —E[||Y — X 5||?] (7.12)
n
this is the same as minimizing 2E[|| X (8* — A1 + E[||€]]?]. So we minimize %E[MSE(XB)]

MSE(XB) = || XB" — XB|[>, 3 = f(Y) (7.13)

7.4.2 Parameter estimation

minimize E[||5* — B||2}

Prediction is simpler, because parameter estimation requires the true model

7.5 Least Squares in High Dimensions

Usual: 55 = (XTX)"1XTY if (XTX)~! exists. But 4% is not defined if d > n or X is rank deficient
(linearly dependent).

Still, you can find a solution to:
in ||Y — XB|? 7.14
i [[Y — X5 (7.14)
The function 8 — ||Y — X 3||? is convex.

To find its minimum, we set the gradient to zero:

= XT'Xp=Xx"y (7.15)

Any [ satisfying this will be a minimum.

If (XTX)~! does not exist, we have infinitely many solutionns. But if all we want is X3 (rather than 3) we
can take any such solution.
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