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10.1 LASSO

10.1.1 Fast rates for LASSO

In the last class we derived slow rates for LASSO under minimal assumptions. Now we will derive fast rates
for LASSO under Restricted Eigenvalue(RE) condition.

Theorem 10.1 Assume that

• supp(θ∗) = S where |S| = s > 0.

• X satisfies RE(3, κ) with respect to S, where κ > 0 is a constant.

• λn ≥ 2
n‖X

T ε‖∞.

Then any Lasso solution θ̂ satisfies

1

n
‖X
(
θ̂ − θ∗

)
‖22 ≤ 9λ2n

s

κ
,

and

‖θ̂ − θ∗‖2 ≤
3

κ

√
sλn.

Proof: First, we show that given our choice of λn, the error vector ∆̂ = (θ̂ − θ∗) ∈ C(3, S). By the Basic
inequality,

0 ≤ 1

2n
‖X∆̂‖22 ≤

εTX∆

n
+ λn[‖θ∗‖1 − ||θ̂||1].

Since θ∗ is S-sparse, we know

‖θ∗‖1 − ||θ̂||1 = ‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖θ̂Sc‖1
= ‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖∆̂Sc‖1.
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Plugging this into the Basic inequality yields:

0 ≤ 1

2n
‖X∆̂‖2 (10.1)

≤ 2
‖XT ε‖∞

n
||∆̂||1 + 2λn

(
||θ∗S ||1 − ||θ∗S + ∆̂S ||1 − ||∆̂Sc ||1

)
(10.2)

≤ 2
‖XT ε‖∞

n
||∆̂||1 + 2λn

(
||∆̂S ||1 − ||∆̂Sc ||1

)
(by triangle inequality) (10.3)

≤ λn||∆̂S ||1 + λn||∆̂Sc ||1 + 2λn||∆̂S ||1 − 2λn||∆̂Sc ||1 (10.4)

= λn

(
3||∆̂S ||1 − ||∆̂Sc ||1

)
(10.5)

⇒ ∆̂ ∈ C(3, S). (10.6)

We now prove the first claim. Note that:

‖∆̂S‖1 ≤
√
s‖∆̂S‖2 ≤

√
s‖∆̂‖2.

We now use RE(3, κ) condition to get the following inequalities:

=⇒ 1

n
‖X∆̂‖22 ≤ 3λn‖∆̂S‖1 ≤ 3

√
sλn‖∆̂‖2 ≤ 3λn

√
s√
κ

1√
n
‖X∆̂‖2

=⇒ 1

n
‖X∆̂‖22 ≤ 9λ2n

s

κ
.

To prove the second claim, we again use RE(3, κ) condition on the above inequality.

κ‖∆̂‖22 ≤
1

n
‖X∆̂‖22 ≤ 9λ2n

s

κ

=⇒ ‖∆̂‖2 ≤ 3λn

√
s

κ
.

10.1.2 Model Selection Property of LASSO

Lets now look at the model selection properties of LASSO. The following theorem shows that LASSO can
recover the true signed support under appropriate conditions. Please refer to [WM09] for a proof of the
theorem.

Theorem 10.2 Assume that the true parameter θ∗ satisifes supp(θ∗) = S where |S| = s > 0, and the design
matrix X ∈ Rn×p satisfies the following conditions:

• max
i∈[p]
‖Xi‖2 .

√
n

• λmin( 1
nX

T
SXS) ≥ Cmin > 0

• (Irrepresentability) max
i∈Sc
‖XT

i XS(XT
SXS)−1‖1 ≤ α < 1

Then for λn & ‖ 1nX
T ε‖∞, the following statements hold with high probability:
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• LASSO has a unique solution.

• (`∞ convergence rate) ‖θ̂S − θ∗S‖∞ ≤ λn
[
‖
(
1
nX

T
SXS

)−1 ‖∞ + 4σ√
Cmin

]
.

• (Sign Consistency) If min
i∈S
|θ∗i | > λn

[
‖
(

1

n
XT
SXS

)−1
‖∞ +

4σ√
Cmin

]
, then θ̂ has the correct signed

support i.e., supp(θ̂) = supp(θ∗) and sgn(θ̂) = sgn(θ∗).

10.1.3 Oracle Inequalities

Until now, we assumed that the data {Xi, Yi}ni=1 is generated from a linear model. But what if this as-
sumption is violated? What can we say about the estimator in this case? When can we say our estimator is
good? We introduce oracle inequalities as a means to measure the performance of an estimator if the model
is misspecified.

Consider the following model for (X,Y ), X ∈ Rd, Y ∈ R:

Y = f(X) + ε,

where f : Rd → R, ε ∼ SG(σ2). Assume a dictionary of functions {f1, f2, . . . fM} from Rd to R . Given
n−observations {Xi, Yi}ni=1 we wish to estimate f using a linear combination of the functions in dictionary:

fθ(X) =

M∑
i=1

θifi(X), where (θ1, θ2, . . . θM ) ∈ RM .

Note that f need not be in span{f1, f2, . . . fM}.

Remark: We can recover linear regression if M = d and fi(X) = X(i) where X(i) is the ith coordinate of
X.

Definition 10.3 For any estimator f̂(X) of f(X) based on {Xi, Yi}ni=1, define its risk as:

R(f̂) = E[MSE(f̂)] =
1

n
E[

n∑
i=1

(f̂(Xi)− f(Xi))
2].

Definition 10.4 Let K ⊆ RM . The oracle on K is the function fθ∗ such that:

R(fθ∗) ≤ R(fθ) ∀θ ∈ K.

We want to do as well as the oracle risk R(fθ∗). An estimator satisfies oracle inequality in expectation if

R(f̂) ≤ cR(f∗θ ) + Φ(n,M, f).

where c ≥ 1. We ideally want c to be close to 1 and Φ→ 0.

Theorem 10.5 (Oracle inequality for least squares) Let ε1, . . . εn ∈ SGn(σ2). Then the following holds
with probability at least 1− δ:

MSE(fθ̂LS
) ≤ inf

θ∈RM
MSE(fθ) + cσ2M

n
log

1

δ
.

where θ̂LS is the least squares estimator with design matrix Φn×M where Φij = fj(Xi).
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Proof: Let θ∗ = arg min
θ∈RM

MSE(fθ). With a slight abuse of notation, let fθ = [fθ(X1), fθ(X2), . . . fθ(Xn)]T .

Since θ̂LS is the least squares estimator, we have:

‖Y − fθ̂LS
‖22 ≤ ‖Y − fθ∗‖22.

Subsituting Y = f + ε in the above equation we get:

‖f − fθ̂LS
‖22 − ‖f − fθ∗‖22 ≤ 2εT (fθ̂LS

− fθ∗).

Also note that fθ∗ is the orthogonal projection of f on span{f1, f2, . . . fM}. So

f − fθ∗ ⊥ fθ∗ , fθ̂LS

Using this in the above inequality we get:

‖fθ̂LS
− fθ∗‖22 ≤ 2εT (fθ̂LS

− fθ∗).

=⇒ ‖fθ̂LS
− fθ∗‖2 ≤ 2

〈
ε,

(fθ̂LS
− fθ∗)

‖fθ̂LS
− fθ∗‖2

〉
Note that (fθ̂LS

− fθ∗) lies in the column span of Φ which is an M−dimensional space. Let Φ̃n×M be an

orthonormal basis of column span of Φ. There exists a v such that (fθ̂LS
− fθ∗) = Φ̃v. Substituting this in

the RHS of the above inequality we get:

‖fθ̂LS
− fθ∗‖2 ≤ 2‖Φ̃T ε‖2 . σ

√
M log

1

δ
,

where the last inequality holds with probability at least 1− δ.
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