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(Recap)Main Result for Oracle Inequality for Nonparametric Least Squares

Theorem 24.1 Assume ∂F = {F−F} to be star-shaped and let δn be any solution of the critical inequality:

G(δ, ∂F)

δ
≤ δ

2σ

Then ∃c0, c1, c2 > 0, such that for any t ≥ δn and for all f ∈ F we have:∣∣∣∣∣∣f̂n − f∗∣∣∣∣∣∣2
n
≤ inf
γ∈(0,1)

{
1 + γ

1− γ
||f − f∗||2n +

c0tδn
γ(1− γ)

}
(24.1)

w.p. ≥ 1− c1exp
(
−c2ntδn
σ2

)
Proof: Proof can be found in Lecture 23.

Remarks Note that Theorem 24.1 gives a family of bounds and setting t = δn in Theorem 24.1, yields an
upper bound of the form: ∣∣∣∣∣∣f̂ − f∗∣∣∣∣∣∣2

n
- inf
f∈F
||f − f∗||2n + δ2n (24.2)

24.1 Uses of Oracle Inequality for Nonparametric least squares

24.1.1 Orthogonal series expansion

Let P be a distribution on X and let {φm}∞m=1 be an orthonormal basis for L2(P ) i.e.
∫
φ2m(x)dP = 1 and∫

φm(x)φm′(x)dP = 0. For all integers T = 1, 2 . . ., consider the the function class:

F(1, T ) =

{
f ∈ L2(P )

∣∣ f =

T∑
m=1

θmφm,

T∑
m=1

θ2m ≤ 1

}
Then fθ̂ be the constrained least-squares estimate over this class which can be computed by solving the
following version of ridge regression:

θ̂ ∈ argmin
θinRT

1

2
||Y −Xθ||22 + λn ||θ||22 (24.3)

where [Xn×T ]ij = φj(xi)
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Let f∗ be the true function which lies in the unit ball in L2(P ). Since {φm}∞m=1 is an orthonormal basis for

L2(P ), we have f∗ =
∑
m φmθ

∗
m such that from Parseval’s theorem ||f∗||22 =

∑
(θ∗m)

2 ≤ 1.
Then,

inf
f∈F(1,T )

||f − f∗||2L2(P ) =

∞∑
m=T+1

(θ∗m)2 for each T = 1, 2, . . .

and the infimum is achieved by the truncated function f̃ =
∑T
m=1 θ

∗
mφm.

• For this problem(Equation 24.3), the critical radius δn - σ2T
n (HW!!).

• Set f = f̃ in the oracle inequality in Equation 24.2, we get:∣∣∣∣fθ̂ − f∗∣∣∣∣2n -
∞∑

m=T+1

(θ∗m)2︸ ︷︷ ︸
Approximation Error

+
σ2T

n︸︷︷︸
Estimation Error

(24.4)

As n→∞, we can let T = T (n)→∞, and we choose the optimal T by balancing the approximation
and estimation terms.

• In many cases the coefficients θ∗m exhibit polynomial decay such that:

∞∑
m=T+1

θ∗m -
c

T 2α
α ≥ 1, α ∈ N

This is the case if f∗ is α−times differentiable and it’s α−order derivative is square integrable. In this
case, we can obtain the optimal T , balancing both terms in Equation 24.4,

c

T 2α
=
σ2T

n
=⇒

( cn
σ2

) 1
2α+1

Using this, we get the final rate as
(
σ2T
n

) 2α
2α+1

.

24.1.2 Best Sparse Approximation.

Consider the standard linear model yi = fθ∗(xi)+σwi, where fθ∗(x) := 〈θ∗, x〉 is an unknown linear regression
function, and wi ∼ N (0, 1) is an i.i.d. noise sequence. For a fixed sparsity index s ∈ {1, 2, . . . , d}, consider
the class of all linear regression functions based on s-sparse vectors, the class:

Fspar(s) :=
{
fθ|θ ∈ Rd, ||θ||0 ≤ s

}
Consider the estimator θ̂ corresponding to performing least-squares over the set of all regression vectors with
at most s non-zero coefficients:

fθ̂ ∈ argmin
fθ∈Fspar(s)

1

2n
||Y − fθ||22 (24.5)

Using Equation 24.2 for this problem, we get:∣∣∣∣fθ̂ − f∗∣∣∣∣2n - inf
f∈Fspar(s)

||f − f∗||2n + σ2 s log(ed/s)

n︸ ︷︷ ︸
δ2n

(24.6)

where we devote the rest of section to proving that δ2n = σ2 s log(ed/s)
n .
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• Firstly note that ∂Fspar(s) = Fspar(s) − Fspar(s) ⊂ Fspar(2s). Therefore, we have Gn (δ, ∂Fspar(s)) ≤
Gn (δ, ∂Fspar(2s)).

• Now, let S ⊆ {1, 2, . . . , d} with |S| = 2s ≤ d. Let Xn,d with ith row given by xTi . And let XS ∈ Rn×2s
be the sub-matrix with columns indexed by S. We can then write:

• Then,

Gn (δ, ∂Fspar(2s)) = Ew

[
max
|S|=2s

Zn(S)

]
where Zn(S) = sup

θS∈R2s

||XSθS ||2≤δ
√
n

∣∣∣∣wTXSθS
n

∣∣∣∣
– Now, observe that for a fixed S, Zn(S) is a Lipschitz function of w1, . . . , wn with Lipschitz constant

δ√
n

. So, by concentration of Lipschitz function for gaussian r.v.’s, we have that:

P (Zn(S)) ≥ E [Zn(S)] + tδ ≤ e
−nt2

2 ∀t > 0. (24.7)

– So, we just need to bound E [Zn(S)]. To do this, let XS = UDV T be the SVD decomposition of
XS , where U ∈ Rn×2s and V ∈ Rd×2s are the left and right singular matrices, and D ∈ R2s×2s is
a diagonal matrix of singular values.

– Noting that
||XSθS ||2√

n
=
||DV T θS||

2√
n

, let β = DV T θS√
n

, we get:

E [Zn(S)] ≤ E

 sup
β∈R2s

||β||2≤δ

∣∣∣∣ 1√
n
〈UTw, β〉

∣∣∣∣
 ≤ δ√

n
E
[∣∣∣∣UTw∣∣∣∣

2

]

– Now, by observing that UTw ∼ N (0, I2s), and using Jensen’s inequality, we get that
∣∣∣∣UTw∣∣∣∣

2
≤

√
2s. Therefore E [Zn(S)] ≤ δ

√
2s√
n

.

– Now combining, the upper bound on expectation with the tail bounds of Equation 24.7, along
with a union bound over all subsets of size 2s, we get:

P

[
max
|S|=2s

Zn(S) ≥ δ

(√
2s

n
+ t

)]
≤
(
d

2s

)
e−

nt2

2 , valid for all t ≥ 0 (24.8)

• By integrating this tail bound, we get:

Ew

[
max
|S|=2s

Zn(S)

]
δ

=
Gn (δ, ∂Fspar(2s))

δ
-

√
s

n
+

√√√√ log
((

d
2s

))
n

-

√
s log(ed/s)

n
. (24.9)

• Hence, from Equation 24.9, we get that the critical inequality is satisfied for δ2n ' σ2 s log(ed/s)
n

24.2 Introduction to U-statistics

U-statistics were invented by Hoeffding in 1948, although not in a high dimensional setting. Let P be a
family of distributions on (X ,B), and let θ : P 7→ R. If P ∈P, then θ(P ) is it’s parameter.
A parameter θ is estimable based on m iid realizations X1, X2, . . . , Xm ∼ P if there exists a kernel function
h : XM 7→ R such that θ(P ) = E [h(X1, X2, . . . , Xm)]. The smallest such m is called the degree of the
parameter θ.
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Symmetry. WLOG we may take h to be symmetric in its arguments. If h is not symmetric, we may
symmetrize by considering the following function h̃ obtained by averaging over all permutations of the input:

h̃(X1, . . . , Xm) =
1

m!

∑
σ∈Sm

h(Xσ1 , Xσ2 , . . . , Xσm) (24.10)

and E[h̃(X1, . . . , Xm)] = E[h(X1, X2, . . . , Xm)].

Estimation. Suppose we obtain n > m samples X1, X2, . . . , Xn
iid∼ P . For a symmetric kernel function h

which estimates θ(P ) unbiasedly, the corresponding U-statistic estimator is given by:

Un = Un(h) =

(
n

m

)−1 ∑
i1<...<im

h(Xi1 , . . . , Xim) (24.11)

where m is the order/degree of the parameter θ(P ). Clearly E[Un] = θ(P ), hence Un is an unbiased estimator
of the parameter θ(P ).

Motivation and Intuition. Let Sn = S(X1, . . . , Xn) be an unbiased estimator of θ(P ). Can we somehow
reduce its variance?
Let Un be the corresponding U-statistic i.e.:

Un =
1

n!

∑
σ∈Sn

S(Xσ1
, . . . , Xσn) (24.12)

Then, Un = E[Sn|X(1), . . . , X(n)], assuming, θ = 0, then the variance of Un is given by:

E[U2
n] = E

[
E[Sn|X(1), . . . , X(n)]

2
]

≤ E
[
E[S2

n|X(1), . . . , X(n)]
2
]

(UsingJensen′s)

≤ E[S2
n]

Hence, we obtained an unbiased estimator whose variance is smaller than the initial variance.
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