36-755: Advanced Statistical Theory 1 Fall 2016

Lecture 13: October 17

Lecturer: Alessandro Rinaldo Scribes: Adarsh Prasad

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Sparse PCA for Spiked Covariances

Setup. Let $\Sigma_{d \times d} = \theta v v^T + I_d$ where $\theta > 0$, $v \in S^{d-1}$ and $v \in \mathbb{R}$ s.t. $||v||_0 = k \leq \frac{d}{2}$. Observe that $\|\Sigma\|_{op} = 1 + \theta$. Then the goal is to estimate v by solving the following optimization problem:

> $\widehat{v} \in \operatornamewithlimits{argmax}_{\substack{u \in \mathcal{S}^{d-1}\ ||u||_0 = k'}}$ $k \leq k' \leq \frac{d}{2}$ $u^T\widehat{\Sigma}u$

For the above setup, we have the following Theorem:

Theorem 13.1 Let $\{X_1, X_2, ..., X_n\}$ be zero-mean with co-variance Σ , and each $X_i \in SG_d(||\Sigma||_{op})$, then w.p. at least $1 - \delta$, $\delta \in (0, 1)$:

$$
\min_{\epsilon \in \pm 1} ||\epsilon \hat{v} - v||^2 \precsim \frac{1 + \theta}{\theta} \max\{\sqrt{A}, A\}
$$

where $A = \frac{(k + k') \log\left(\frac{ed}{k + k'}\right) + \log(1/\delta)}{n}$

Proof:(Theorem 13.1)

Observe the following:

$$
\theta \sin^2 (\angle (v, \hat{v})) = v^T \Sigma v - \hat{v}^T \Sigma v
$$

$$
\leq \left\langle \left\langle \hat{\Sigma} - \Sigma, \hat{v} \hat{v}^T - v v^T \right\rangle \right\rangle
$$
 (13.1)

where $\langle \langle A, B \rangle \rangle = \text{trace}(A^T B)$. Also, observe that the frobenius norm $||A||_F^2 = \langle \langle A, A \rangle \rangle$.

Now, we know that v, \hat{v} are k, k' -sparse respectively, which implies that $\exists S \subset \{1, 2, ..., d\}$ with $|S| \leq k + k'$, such that:

$$
\left\langle \left\langle \hat{\Sigma} - \Sigma, \hat{v}\hat{v}^T - vv^T \right\rangle \right\rangle = \left\langle \left\langle \hat{\Sigma}_S - \Sigma_S, \hat{v}_S \hat{v}_S^T - v_S v_S^T \right\rangle \right\rangle
$$

where $\widehat{\Sigma}_S, \Sigma_S$ are sub-matrices of $\widehat{\Sigma}, \Sigma$ respectively with rows/columns in S. Similarly, \widehat{v}_S, v_s are sub-vectors of \hat{v} , *v* respectively with entries in S.

 \blacksquare

Now, we get:

$$
\left\langle \left\langle \hat{\Sigma} - \Sigma, \hat{v}\hat{v}^T - vv^T \right\rangle \right\rangle = \left\langle \left\langle \hat{\Sigma}_S - \Sigma_S, \hat{v}_S \hat{v}_S^T - v_S v_S^T \right\rangle \right\rangle
$$

\n
$$
\leq \left\| \hat{\Sigma}_S - \Sigma_S \right\|_{op} \left\| \hat{v}_S \hat{v}_S^T - v_S v_S^T \right\|_1
$$

\n
$$
\left\langle \left\langle \hat{\Sigma} - \Sigma, \hat{v}\hat{v}^T - vv^T \right\rangle \right\rangle \leq \left\| \hat{\Sigma}_S - \Sigma_S \right\|_{op} \times \sqrt{2} \left\| \hat{v}_S \hat{v}_S^T - v_S v_S^T \right\|_2
$$
 (13.2)

Now, we have that,

$$
\|\widehat{v}_{S}\widehat{v}_{S}^{T} - v_{S}v_{S}^{T}\|_{2} = \sqrt{2(1 - (\widehat{v}^{T}v)^{2})}
$$
 (proved in HW-5)

$$
= \sqrt{2\sin^{2}\left(\angle(v,\widehat{v})\right)}
$$
(13.3)

Plugging the above in Equation 13.2, we get:

$$
\left\langle \left\langle \hat{\Sigma} - \Sigma, \hat{v}\hat{v}^T - vv^T \right\rangle \right\rangle \le \left\| \hat{\Sigma}_S - \Sigma_S \right\|_{op} \times 2 \times \sin \left(\angle(v, \hat{v}) \right) \tag{13.4}
$$

Combining Equation 13.1 and Equation 13.4, we get the following result:

$$
\theta \sin \left(\angle (v, \hat{v}) \right) \le 2 \left\| \widehat{\Sigma}_S - \Sigma_S \right\|_{op}
$$
\n(13.5)

Now, recall that $\min_{\epsilon \in \pm 1} ||\epsilon \hat{v} - v||^2 \leq 2 \sin^2 (\angle (v, \hat{v}))$. Plugging this into Equation 13.5, we get:

$$
\min_{\epsilon \in \pm 1} ||\epsilon \hat{v} - v|| \le \frac{\sqrt{8}}{\theta} \left\| \hat{\Sigma}_S - \Sigma_S \right\|_{op} \le \frac{\sqrt{8}}{\theta} \sup_{S : |S| = k + k'} \left\| \hat{\Sigma}_S - \Sigma_S \right\|_{op}
$$
(13.6)

Now, to control the probability of deviation of supremum, we use union bound:

$$
P\left(\sup_{S:|S|=k+k'}\left\|\widehat{\Sigma}_S-\Sigma_S\right\|_{op}\geq t\left\|\Sigma\right\|_{op}\right)\leq \left(\frac{d}{k+k'}\right)\times 144^{k+k'}\times \exp\left(-n/2.\min\left[\left(\frac{t}{32}\right)^2,\frac{t}{32}\right]\right)\tag{13.7}
$$

Using bounds on binomial coefficients: $\left(\frac{n}{k}\right)^k \leq \left(\frac{n}{k}\right)^k \leq \left(\frac{en}{k}\right)^k$, Plugging this into Equation 13.7 and moving everything into the exponential, we get:

$$
P\left(\sup_{S:|S|=k+k'}\left\|\hat{\Sigma}_S-\Sigma_S\right\|_{op}\geq t\left\|\Sigma\right\|_{op}\right)\leq \exp\left(-\frac{n}{2}\min\left[\left(\frac{t}{32}\right)^2,\frac{t}{32}\right]+2(k+k')\log 12+(k+k')\log\left(\frac{ed}{k+k'}\right)\right)
$$
(13.8)

Now, to prove Theorem 13.1, pick $t \ge \max\{A, \sqrt{A}\}\)$ such that RHS of Equation 13.8 is less than equal to δ , so, choosing $A \precsim \frac{(k+k')\log\left(\frac{ed}{k+k'}\right) + \log(1/\delta)}{n}$ $\frac{e^{i k t} + e^{i k t}}{n}$ is sufficient. For this value of A, we get that with probability at least $1 - \delta$:

$$
\min_{\epsilon \in \pm 1} ||\epsilon \widehat{v} - v||^2 \precsim \frac{\|\Sigma\|_{op}}{\theta} \max\{\sqrt{A}, A\}
$$

Remark!!: For proof for a broader class of covariances, refer to Theorem 8.1 in [1]

13.2 Uniform Law of Large Numbers (Chapter 4 [1])

Consider the following Example:

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} P$ with CDF F. i.e. $F(x) = P(X \leq x)$, $\forall x \in \mathbb{R}$. Now, for a fixed t, we want to estimate the empirical CDF $F_n(t)$ given by:

$$
\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le t)
$$

where $\mathbb{I}(\cdot)$ is the indicator function.

 $\widehat{F}_n(t)$ concentrates well around $F(t)$. To see this, observe that $\mathbb{I}(X_i \leq t) \sim \text{Bernoulli}(F(t))$, so one can use Hoeffding's inequality to get tight concentration. This means that one can estimate F very well, *point-wise.*

However, a better(stronger) result is to bound \parallel $\left\| \widehat{F}_n-F \right\|$ $\Big\|_{\infty} = \sup_{z \in \mathbb{R}} |\widehat{F}_n(z) - F(z)|$. One would want tight bounds on $P(\Vert$ $\left\| \widehat{F}_n - F \right\|$ $\Big\|_{\infty} \geq t$.

General Setup. Let P be a probability distribution on $(\mathcal{X}, \mathcal{B})$ and \mathcal{F} be a class of real valued functions on X. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} P$ and construct the empirical measure associated to the sample:

$$
\forall A \text{ measurable}, \quad P_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \in A)
$$

We make **no** assumptions on $\mathscr F$ apart from that it is a uniformly bounded class. We are interested in the random variable:

$$
||P_n - P||_{\mathscr{F}} = \sup_{f \in \mathscr{F}} \left(\frac{1}{n} \left| \sum_{i=1}^n \left(f(X_i) - E[f(X_i)] \right) \right| \right) = \sup_{f \in \mathscr{F}} ||P_n f - Pf||
$$

We want to establish convergence in probability, i.e. $||P_n - P||_{\mathscr{F}} \stackrel{P}{\to} 0$. If we can establish this convergence, then $\mathscr F$ is called a Glivenko-Cantelli class.

Definition 13.2 We say that $\mathscr F$ is a Glivenko-Cantelli class for P if $||P_n - P||_{\mathscr F}$ converges to zero in probability as $n \to \infty$.

In the following example, we show how the uniform concentration of the empirical CDF is just a special case of the above definition.

Example 13.3 (Glivenko-Cantelli Theorem) For any distribution, the empirical CDF F_n is a strongly consistent estimator of the population CDF F in the uniform norm, meaning that:

$$
\left\|\widehat{F}_n - F\right\|_{\infty} \stackrel{a.s.}{\to} 0
$$

Consider the function class $\mathscr{F} = (\mathbb{I}_{(-\infty,t]}(\cdot)|t \in \mathbb{R})$ where $\mathbb{I}_{(-\infty,t]}(\cdot)$ is $\{0-1\}$ valued indicator function of the interval $(-\infty, t]$. For each fixed $t \in \mathbb{R}$, we have $E[\mathbb{I}_{(\infty,t]}(X)] = P[Xt] = F(t)$, so that the classical Glivenko-Cantelli theorem corresponds to a strong uniform law for the class in Definition 13.2.

13.2.1 Decision-Theoretic Motivation.

Consider an indexed-family of probability distributions $\mathscr{P} = \{P_{\theta} | \theta \in \Omega \subseteq \Theta\}$, and suppose that we are given n samples $X^n = \{X_1, \ldots, X_n\}$ each sample lying in some space $\mathscr X$ and suppose that the samples are drawn i.i.d. according to a distribution P_{θ^*} for some fixed but unknown $\theta^* \in \Theta$.

A standard decision-theoretic approach to estimating θ^* is based on minimizing a loss function of the form $\mathcal{L}_{\theta}(x)$, which measures the *discrepancy* between a parameter $\theta \in \Omega$ and the sample $x \in \mathscr{X}$.

Given the collection of n samples X^n , the *empirical risk* $(\hat{\mathcal{R}}_n(\theta, \theta^*))$ associated to $\mathcal{L}_{\theta}(\cdot)$ is defined by:

$$
\widehat{\mathcal{R}}_n(\theta,\theta^*) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_{\theta}(X_i)
$$

The $risk($ or *population risk*) is defined by:

$$
\mathcal{R}(\theta,\theta^*)=E_{\theta^*}\left[\mathcal{L}_{\theta}(X)\right]
$$

where the expectation E_{θ^*} is taken over a sample $X \sim P_{\theta^*}$.

Let $\widehat{\theta} \in \operatorname*{argmin}_{\theta \in \Omega} \widehat{\mathcal{R}}_n(\theta, \theta^*)$ be the empirical risk minimizer, then one is interested in the excess-risk $\delta \mathcal{R}(\widehat{\theta}, \theta^*)$ defined by:

$$
\delta \mathcal{R}(\widehat{\theta}, \theta^*) = \mathcal{R}(\widehat{\theta}, \theta^*) - \inf_{\theta \in \Omega} \mathcal{R}(\theta, \theta^*)
$$

Example 13.4 (Maximum Likelihood) Consider a family of distributions $\{P_\theta, \theta \in \Theta\}$, each with a strictly positive density p(defined with respect to a common underlying measure). In order to estimate the true parameter, consider the loss function given by:

$$
\mathcal{L}_{\theta}(x) = \log \left(\frac{P_{\theta^*}(x)}{P_{\theta}(x)} \right)
$$

Then the population risk $\mathcal{R}(\theta, \theta^*)$ is simply the KL-divergence $KL(P_{\theta^*}||P_{\theta})$. The empirical risk minimizer $\widehat{\theta}$ is the Maximum Likelihood Estimator. To see this:

$$
\hat{\theta} \in \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\theta}(X_i)
$$
\n
$$
\in \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{P_{\theta^*}(x)}{P_{\theta}(X_i)} \right)
$$
\n
$$
\in \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{1}{P_{\theta}(X_i)} \right)
$$
\n
$$
\in \underset{\theta}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \log \left(P_{\theta}(X_i) \right)
$$
\n
$$
\in \underset{\theta}{\operatorname{argmax}} P_{\theta}(X^n)
$$

Example 13.5 (Binary Classification) Suppose that we are given n samples $(X_i, Y_i) \in \mathbb{R}^d \times \{1, +1\}$, where X_i corresponds to a set features, and the binary variable Y_i corresponds to a label. This data can be viewed as being generated from a distribution P_X over the features and a (binary-valued)conditional distribution $P_{Y|X}$, then define the likelihood ratio $\psi(x) = \frac{P(Y=1|X=x)}{P(Y=0|X=x)}$.

Then the goal of binary classification is to estimate a function $f : \mathbb{R}^d \to \{-1,1\}$ such that probability of mis-classification $P(Y \neq f(X))$ is minimized.

Consider the loss function:

$$
\mathcal{L}_f^{0/1}(X,Y) = \begin{cases} 1 & \text{if } Y \neq f(X) \\ 0 & \text{otherwise.} \end{cases}
$$

Observe that the population risk for zero-one loss function $\mathcal{L}^{0/1}_f$ $f_f^{0/1}$ is the probability of mis-classification $P(Y \neq 0)$ $f(X)$.

The function that minimizes this probability of mis-classification(or $0-1$ population risk) is called the Bayesclassifier f^* and in the case of $P(Y = 1) = P(Y = -1) = 1/2$, the Bayes classifier $f^*(x) = sign(\psi(x) - 1/2)$.

$$
f^*(X) = \begin{cases} 1 & \text{if } \psi(X) \ge 1/2 \\ -1 & \text{if } \psi(X) < 1/2 \end{cases}
$$

For any $f: \mathbb{R}^d \to \{-1,1\}$, the empirical risk for $\mathcal{L}^{0/1}$ given by:

$$
\widehat{\mathcal{R}}_n(f, f^*) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{f(X_i) \neq Y_i\}
$$

is the number of training sample mis-classified.

Let $\widehat{\theta}$ be the empirical risk minimizer, then the excess risk $\delta \mathcal{R}(\widehat{\theta}, \theta^*) = \mathcal{R}(\widehat{\theta}, \theta^*) - \inf_{\theta \in \Omega} \mathcal{R}(\theta, \theta^*)$ can be written as:

$$
\delta \mathcal{R}(\hat{\theta}, \theta^*) = \mathcal{R}(\hat{\theta}, \theta^*) - \inf_{\theta \in \Omega} \mathcal{R}(\theta, \theta^*) = \mathcal{R}(\hat{\theta}, \theta^*) - \mathcal{R}(\theta_0, \theta^*)
$$

=
$$
\underbrace{\mathcal{R}(\hat{\theta}, \theta^*) - \widehat{\mathcal{R}}_n(\hat{\theta}, \theta^*)}_{T_1} + \underbrace{\widehat{\mathcal{R}}_n(\hat{\theta}, \theta^*) - \widehat{\mathcal{R}}_n(\theta_0, \theta^*)}_{T_2} + \underbrace{\widehat{\mathcal{R}}_n(\theta_0, \theta^*) - \mathcal{R}(\theta_0, \theta^*)}_{T_3}
$$

Note that $T_2 \leq 0$ as $\hat{\theta}$ is the minimizer of empirical risk over Ω . T_3 can be dealt with in a relatively straightforward manner, because θ_0 is a deterministic(unknown) quantity.

To control T_1 , observe that it can be written as:

$$
T_1 = \mathcal{R}(\widehat{\theta}, \theta^*) - \widehat{\mathcal{R}}_n(\widehat{\theta}, \theta^*)
$$

= $\frac{1}{n} \sum_{i=1}^n \left(E[\mathcal{L}_{\widehat{\theta}}(X_i)] - \mathcal{L}_{\widehat{\theta}(X_i)} \right)$
 $\leq \sup_{\theta \in \Omega} \left| \frac{1}{n} \sum_{i=1}^n \left(\mathcal{L}_{\widehat{\theta}(X_i)} - E[\mathcal{L}_{\widehat{\theta}}(X_i)] \right) \right| = \|P_n - P\|_{\mathscr{L}(\Omega)}$

where $\mathscr{L}(\Omega) = {\{\mathcal{L}_{\theta}; \theta \in \Omega\}}$

Note that T_3 is also dominated by $||P_n - P||_{\mathscr{L}(\Omega)}$. So, to control the excess risk of empirical risk minimizers, one needs to establish a uniform law of large numbers for the loss class $\mathscr{L}(\Omega)$.

References

[1] M. WAINWRIGHT, High-dimensional statistics: A non-asymptotic viewpoint