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13.1 Sparse PCA for Spiked Covariances

Setup. Let Σd×d = θvvT + Id where θ > 0, v ∈ Sd−1 and v ∈ R s.t. ||v||0 = k ≤ d
2 . Observe that

||Σ||op = 1 + θ. Then the goal is to estimate v by solving the following optimization problem:

v̂ ∈ argmax
u∈Sd−1

||u||0=k′

k≤k′≤ d
2

uT Σ̂u

For the above setup, we have the following Theorem:

Theorem 13.1 Let {X1, X2, . . . , Xn} be zero-mean with co-variance Σ, and each Xi ∈ SGd(||Σ||op), then
w.p. atleast 1− δ, δ ∈ (0, 1):

min
ε∈±1

||εv̂ − v||2 -
1 + θ

θ
max{

√
A,A}

where A =
(k + k′) log

(
ed
k+k′

)
+ log(1/δ)

n

Proof:(Theorem 13.1)
Observe the following:

θ sin2 (∠(v, v̂)) = vTΣv − v̂TΣv

≤
〈〈

Σ̂− Σ, v̂v̂T − vvT
〉〉

(13.1)

where 〈〈A,B〉〉 = trace(ATB). Also, observe that the frobenius norm ||A||2F = 〈〈A,A〉〉.

Now, we know that v, v̂ are k, k′-sparse respectively, which implies that ∃S ⊂ {1, 2, . . . , d} with |S| ≤ k+ k′,
such that: 〈〈

Σ̂− Σ, v̂v̂T − vvT
〉〉

=
〈〈

Σ̂S − ΣS , v̂S v̂
T
S − vSvTS

〉〉

where Σ̂S ,ΣS are sub-matrices of Σ̂,Σ respectively with rows/columns in S. Similarly, v̂S , vs are sub-vectors
of v̂, v respectively with entries in S.
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Now, we get: 〈〈
Σ̂− Σ, v̂v̂T − vvT

〉〉
=
〈〈

Σ̂S − ΣS , v̂S v̂
T
S − vSvTS

〉〉
≤
∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op

∣∣∣∣v̂S v̂TS − vSvTS ∣∣∣∣1〈〈
Σ̂− Σ, v̂v̂T − vvT

〉〉
≤
∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op
×
√

2
∣∣∣∣v̂S v̂TS − vSvTS ∣∣∣∣2 (13.2)

Now, we have that, ∣∣∣∣v̂S v̂TS − vSvTS ∣∣∣∣2 =
√

2(1− (v̂T v)2) (proved in HW-5)

=

√
2 sin2 (∠(v, v̂)) (13.3)

Plugging the above in Equation 13.2, we get:〈〈
Σ̂− Σ, v̂v̂T − vvT

〉〉
≤
∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op
× 2× sin (∠(v, v̂)) (13.4)

Combining Equation 13.1 and Equation 13.4, we get the following result:

θ sin (∠(v, v̂)) ≤ 2
∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op

(13.5)

Now, recall that min
ε∈±1

||εv̂ − v||2 ≤ 2 sin2 (∠(v, v̂)). Plugging this into Equation 13.5, we get:

min
ε∈±1

||εv̂ − v|| ≤
√

8

θ

∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op
≤
√

8

θ
sup

S:|S|=k+k′

∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op

(13.6)

Now, to control the probability of deviation of supremum, we use union bound:

P

(
sup

S:|S|=k+k′

∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op
≥ t ||Σ||op

)
≤
(

d

k + k′

)
× 144k+k′ × exp

(
−n/2.min

[(
t

32

)2

,
t

32

])
(13.7)

Using bounds on binomial coefficients:
(
n
k

)k ≤ (nk) ≤ ( enk )k, Plugging this into Equation 13.7 and moving
everything into the exponential, we get:

P

(
sup

S:|S|=k+k′

∣∣∣∣∣∣Σ̂S − ΣS

∣∣∣∣∣∣
op
≥ t ||Σ||op

)
≤ exp

(
−n

2
min

[(
t

32

)2

,
t

32

]
+ 2(k + k′) log 12 + (k + k′) log

(
ed

k + k′

))
(13.8)

Now, to prove Theorem 13.1, pick t ≥ max{A,
√
A} such that RHS of Equation 13.8 is less than equal to δ,

so, choosing A -
(k+k′) log

(
ed

k+k′

)
+log(1/δ)

n is sufficient.
For this value of A, we get that with probability atleast 1− δ:

min
ε∈±1

||εv̂ − v||2 -
||Σ||op
θ

max{
√
A,A}

Remark!!: For proof for a broader class of covariances, refer to Theorem 8.1 in [1]
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13.2 Uniform Law of Large Numbers (Chapter 4 [1])

Consider the following Example:

Let X1, X2, . . . , Xn
iid∼ P with CDF F . i.e. F (x) = P (X ≤ x), ∀x ∈ R. Now, for a fixed t, we want to

estimate the empirical CDF F̂n(t) given by:

F̂n(t) =
1

n

n∑
i=1

I(Xi ≤ t)

where I(·) is the indicator function.

F̂n(t) concentrates well around F (t). To see this, observe that I(Xi ≤ t) ∼ Bernoulli(F (t)), so one can use
Hoeffding’s inequality to get tight concentration. This means that one can estimate F very well, point-wise.

However, a better(stronger) result is to bound
∣∣∣∣∣∣F̂n − F ∣∣∣∣∣∣

∞
= sup

z∈R
|F̂n(z) − F (z)|. One would want tight

bounds on P
(∣∣∣∣∣∣F̂n − F ∣∣∣∣∣∣

∞
≥ t
)

.

General Setup. Let P be a probability distribution on (X ,B) and F be a class of real valued functions

on X . Let X1, X2, . . . , Xn
iid∼ P and construct the empirical measure associated to the sample:

∀A measurable, Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A)

We make no assumptions on F apart from that it is a uniformly bounded class. We are interested in the
random variable:

||Pn − P ||F = sup
f∈F

(
1

n

∣∣∣∣∣
n∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣
)

= sup
f∈F
||Pnf − Pf ||

We want to establish convergence in probability, i.e. ||Pn − P ||F
P→ 0. If we can establish this convergence,

then F is called a Glivenko-Cantelli class.

Definition 13.2 We say that F is a Glivenko-Cantelli class for P if ||Pn − P ||F converges to zero in
probability as n→∞.

In the following example, we show how the uniform concentration of the empirical CDF is just a special case
of the above definition.

Example 13.3 (Glivenko-Cantelli Theorem) For any distribution, the empirical CDF Fn is a strongly
consistent estimator of the population CDF F in the uniform norm, meaning that:∣∣∣∣∣∣F̂n − F ∣∣∣∣∣∣

∞

a.s.→ 0

Consider the function class F =
(
I(−∞,t](·)|t ∈ R

)
where I(−∞,t](·) is {0 − 1} valued indicator function of

the interval (−∞, t]. For each fixed t ∈ R, we have E[I(∞,t](X)] = P [Xt] = F (t), so that the classical
Glivenko-Cantelli theorem corresponds to a strong uniform law for the class in Definition 13.2.
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13.2.1 Decision-Theoretic Motivation.

Consider an indexed-family of probability distributions P = {Pθ|θ ∈ Ω ⊆ Θ}, and suppose that we are given
n samples Xn = {X1, . . . , Xn} each sample lying in some space X and suppose that the samples are drawn
i.i.d. according to a distribution Pθ∗ for some fixed but unknown θ∗ ∈ Θ.

A standard decision-theoretic approach to estimating θ∗ is based on minimizing a loss function of the form
Lθ(x), which measures the discrepancy between a parameter θ ∈ Ω and the sample x ∈X .

Given the collection of n samples Xn, the empirical risk(R̂n(θ, θ∗)) associated to Lθ(·) is defined by:

R̂n(θ, θ∗) =
1

n

n∑
i=1

Lθ(Xi)

The risk(or population risk) is defined by:

R(θ, θ∗) = Eθ∗ [Lθ(X)]

where the expectation Eθ∗ is taken over a sample X ∼ Pθ∗ .

Let θ̂ ∈ argmin
θ∈Ω

R̂n(θ, θ∗) be the empirical risk minimizer, then one is interested in the excess-risk δR(θ̂, θ∗)

defined by:

δR(θ̂, θ∗) = R(θ̂, θ∗)− inf
θ∈Ω
R(θ, θ∗)

Example 13.4 (Maximum Likelihood) Consider a family of distributions {Pθ, θ ∈ Θ}, each with a
strictly positive density p(defined with respect to a common underlying measure). In order to estimate the
true parameter, consider the loss function given by:

Lθ(x) = log

(
Pθ∗(x)

Pθ(x)

)
Then the population risk R(θ, θ∗) is simply the KL-divergence KL(Pθ∗ ||Pθ). The empirical risk minimizer

θ̂ is the Maximum Likelihood Estimator. To see this:

θ̂ ∈ argmin
θ

1

n

n∑
i=1

Lθ(Xi)

∈ argmin
θ

1

n

n∑
i=1

log

(
Pθ∗(x)

Pθ(Xi)

)

∈ argmin
θ

1

n

n∑
i=1

log

(
1

Pθ(Xi)

)

∈ argmax
θ

1

n

n∑
i=1

log (Pθ(Xi))

∈ argmax
θ

Pθ(X
n)
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Example 13.5 (Binary Classification) Suppose that we are given n samples (Xi, Yi) ∈ Rd × {1,+1},
where Xi corresponds to a set features, and the binary variable Yi corresponds to a label. This data can be
viewed as being generated from a distribution PX over the features and a (binary-valued)conditional distri-

bution PY |X , then define the likelihood ratio ψ(x) = P (Y=1|X=x)
P (Y=0|X=x) .

Then the goal of binary classification is to estimate a function f : Rd → {−1, 1} such that probability
of mis-classification P (Y 6= f(X) is minimized.

Consider the loss function:

L0/1
f (X,Y ) =

{
1 if Y 6= f(X)

0 otherwise.

Observe that the population risk for zero-one loss function L0/1
f is the probability of mis-classification P (Y 6=

f(X).

The function that minimizes this probability of mis-classification(or 0-1 population risk) is called the Bayes-
classifier f∗ and in the case of P (Y = 1) = P (Y = −1) = 1/2, the Bayes classifier f∗(x) = sign(ψ(x)−1/2).

f∗(X) =

{
1 if ψ(X) ≥ 1/2

−1 if ψ(X) < 1/2

For any f : Rd → {−1, 1}, the empirical risk for L0/1 given by:

R̂n(f, f∗) =
1

n

n∑
i=1

I{f(Xi) 6= Yi}

is the number of training sample mis-classified.

Let θ̂ be the empirical risk minimizer, then the excess risk δR(θ̂, θ∗) = R(θ̂, θ∗)− inf
θ∈Ω
R(θ, θ∗) can be written

as:

δR(θ̂, θ∗) = R(θ̂, θ∗)− inf
θ∈Ω
R(θ, θ∗) = R(θ̂, θ∗)−R(θ0, θ

∗)

= R(θ̂, θ∗)− R̂n(θ̂, θ∗)︸ ︷︷ ︸
T1

+ R̂n(θ̂, θ∗)− R̂n(θ0, θ
∗)︸ ︷︷ ︸

T2

+ R̂n(θ0, θ
∗)−R(θ0, θ

∗)︸ ︷︷ ︸
T3

Note that T2 ≤ 0 as θ̂ is the minimizer of empirical risk over Ω. T3 can be dealt with in a relatively straight-
forward manner, because θ0 is a deterministic(unknown) quantity.

To control T1, observe that it can be written as:

T1 = R(θ̂, θ∗)− R̂n(θ̂, θ∗)

=
1

n

n∑
i=1

(
E[Lθ̂(Xi)]− Lθ̂(Xi)

)
≤ sup
θ∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
Lθ̂(Xi)

− E[Lθ̂(Xi)]
)∣∣∣∣∣ = ||Pn − P ||L (Ω)

where L (Ω) = {Lθ; θ ∈ Ω}
Note that T3 is also dominated by ||Pn − P ||L (Ω). So, to control the excess risk of empirical risk minimizers,

one needs to establish a uniform law of large numbers for the loss class L (Ω).
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