
1

Chapter 4
Efficient Likelihood Estimation

and Related Tests

1. Maximum likelihood and efficient likelihood estimation

2. Likelihood ratio, Wald, and Rao (or score) tests

3. Examples

4. Consistency of Maximum Likelihood Estimates

5. The EM algorithm and related methods

6. Nonparametric MLE

7. Limit theory for the statistical agnostic: P /∈ P



2



Chapter 4

Efficient Likelihood Estimation and
Related Tests

1 Maximum likelihood and efficient likelihood estimation

We begin with a brief discussion of Kullback - Leibler information.

Definition 1.1 Let P be a probability measure, and let Q be a sub-probability measure on (X,A)
with densities p and q with respect to a sigma-finite measure µ (µ = P + Q always works). Thus
P (X) = 1 and Q(X) ≤ 1. Then the Kullback - Leibler information K(P,Q) is

K(P,Q) ≡ EP

{
log

p(X)
q(X)

}
.(1)

Lemma 1.1 For a probability measure Q and a (sub-)probability measure Q, the Kullback-Leibler
information K(P,Q) is always well-defined, and

K(P,Q)
{
∈ [0,∞] always
= 0 if and only if Q = P .

Proof. Now

K(P,Q) =
{

log 1 = 0 if P = Q ,
log M > 0 if P = MQ, M > 1 .

If P %= MQ, then Jensen’s inequality is strict and yields

K(P,Q) = EP

(
− log

q(X)
p(X)

)

> − log EP

(
q(X)
p(X)

)
= − log EQ1[p(X)>0]

≥ − log 1 = 0 .

!

Now we need some assumptions and notation. Suppose that the model P is given by

P = {Pθ : θ ∈ Θ} .
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We will impose the following hypotheses about P:

Assumptions:

A0. θ %= θ∗ implies Pθ %= Pθ∗ .

A1. A ≡ {x : pθ(x) > 0} does not depend on θ.

A2. Pθ has density pθ with respect to the σ−finite measure µ and X1, . . . ,Xn are i.i.d. Pθ0 ≡ P0.

Notation:

L(θ) ≡ Ln(θ) ≡ L(θ|X) ≡
n∏

i=1

pθ(Xi) ,

l(θ) = l(θ|X) ≡ ln(θ) ≡ log Ln(θ) =
n∑

i=1

log pθ(Xi) ,

l(B) ≡ l(B|X) ≡ ln(B) = sup
θ∈B

l(θ|X) .

Here is a preliminary result which motivates our definition of the maximum likelihood estimator.

Theorem 1.1 If A0 - A2 hold, then for θ %= θ0

1
n

log
(

Ln(θ0)
Ln(θ)

)
=

1
n

n∑

i=1

log
pθ0(Xi)
pθ(Xi)

→a.s. K(Pθ0 , Pθ) > 0 ,

and hence

Pθ0(Ln(θ0|X) > Ln(θ|X))→ 1 as n→∞ .

Proof. The first assertion is just the strong law of large numbers; note that

Eθ0 log
pθ0(X)
pθ(X)

= K(Pθ0 , Pθ) > 0

by lemma 1.1 and A0. The second assertion is an immediate consequence of the first. !

Theorem 1.1 motivates the following definition.

Definition 1.2 The value θ̂ = θ̂n of θ which maximizes the likelihood L(θ|X), if it exists and is
unique, is the maximum likelihood estimator (MLE) of θ. Thus L(θ̂) = L(Θ) or l(θ̂n) = l(Θ).

Cautions:

• θ̂n may not exist.

• θ̂n may exist, but may not be unique.

• Note that the definition depends on the version of the density pθ which is selected; since this
is not unique, different versions of pθ lead to different MLE’s
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When Θ ⊂ Rd, the usual approach to finding θ̂n is to solve the likelihood (or score) equations

l̇(θ|X) ≡ l̇n(θ) = 0 ;(2)

i.e. l̇θi(θ|X) = 0, i = 1, . . . , d. The solution θ̃n say, may not be the MLE, but may yield simply a
local maximum of l(θ).

The likelihood ratio statistic for testing H : θ = θ0 versus K : θ %= θ0 is

λn =
L(Θ)
L(θ0)

=
supθ∈Θ L(θ|X)

L(θ0|X)
=

L(θ̂n)
L(θ0)

,

λ̃n =
L(θ̃n)
L(θ0)

.

Write P0, E0 for Pθ0 , Eθ0 . Here are some more assumptions about the model P which we will use
to treat these estimators and test statistics.

Assumptions, continued:

A3. Θ contains an open neighborhood Θ0 ⊂ Rd of θ0 for which:

(i) For µ a.e. x, l(θ|x) ≡ log pθ(x) is twice continuously differentiable in θ.

(ii) For a.e. x, the third order derivatives exist and
···
l jkl (θ|x) satisfy |

···
l jkl (θ|x)| ≤Mjkl(x)

for θ ∈ Θ0 for all 1 ≤ j, k, l ≤ d with E0Mjkl(X) <∞.

A4. (i) E0{l̇j(θ0|X)} = 0 for j = 1, . . . , d.

(ii) E0{l̇2j (θ0|X)} <∞ for j = 1, . . . , d.

(iii) I(θ0) = (−E0{̈ljk(θ0|X)}) is positive definite.

Let

Zn ≡
1√
n

n∑

i=1

l̇(θ0|Xi) and l̃(θ0|X) = I−1(θ0)l̇(θ0|X) ,

so that

I−1(θ0)Zn =
1√
n

n∑

i=1

l̃(θ0|Xi) .

Theorem 1.2 Suppose that X1, . . . ,Xn are i.i.d. Pθ0 ∈ P with density pθ0 where P satisfies A0 -
A4. Then:

(i) With probability converging to 1 there exist solutions θ̃n of the likelihood equations such that
θ̃n →p θ0 when P0 = Pθ0 is true.

(ii) θ̃n is asymptotically linear with influence function l̃(θ0|x). That is,

√
n(θ̃n − θ0) = I−1(θ0)Zn + op(1) =

1√
n

n∑

i=1

l̃(θ0|Xi) + op(1)

→d I−1(θ0)Z ≡ D ∼ Nd(0, I−1(θ0)) .
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(iii)

2 log λ̃n →d ZT I−1(θ0)Z = DT I(θ0)D ∼ χ2
d .

(iv)

Wn ≡
√

n(θ̃n − θ0)T În(θ̃n)
√

n(θ̃n − θ0)→d DT I(θ0)D = ZT I−1(θ0)Z ∼ χ2
d ,

where

În(θ̃n) =






I(θ̃n) , or
n−1
∑n

i=1 l̇(θ̃n|Xi)l̇(θ̃n|Xi)T , or
−n−1∑n

i=1 l̈(θ̃n|Xi) .

(v)

Rn ≡ ZT
n I−1(θ0)Zn → ZT I−1(θ0)Z ∼ χ2

d .

Here we could replace I(θ0) by any of the possibilities for În(θ̃n) given in (iv) and the con-
clusion continues to hold.

(vi) The model P satisfies the LAN condition at θ0:

l(θ0 + n−1/2t)− l(θ0) = tT Zn −
1
2
tT I(θ0)t + oP0(1)

→d tT Z − 1
2
tT I(θ0)t ∼ N(−(1/2)σ2

0 ,σ2
0)

where σ2
0 ≡ tT I(θ0)t. Note that
√

n(θ̂n − θ0) = t̂n = argmax{ln(θ0 + n−1/2t)− ln(θ0)}
→d argmax{tT Z − (1/2)tT I(θ0)t} = I−1(θ0)Z
∼ Nd(0, I−1(θ0)).

Remark 1.1 Note that the asymptotic form of the log-likelihood given in part (vi) of theorem 1.2
is exactly the log-likelihood ratio for a normal mean model Nd(I(θ0)t, I(θ0)). Also note that

tT Z − 1
2
tT I(θ0)t =

1
2
ZT I−1(θ0)Z −

1
2
(t− I−1(θ0)Z)T I(θ0)(t− I−1(θ0)Z) ,

which is maximized as a function of t by t̂ = I−1(θ0)Z with maximum value ZT I−1(θ0)Z/2.

Corollary 1 Suppose that A0-A4 hold and that ν ≡ ν(Pθ) = q(θ) is differentiable at θ0 ∈ Θ.
Then ν̃n ≡ q(θ̃n) satisfies

√
n(ν̃n − ν0) =

1√
n

n∑

i=1

l̃ν(θ0|Xi) + op(1) →d N(0, q̇T (θ0)I−1(θ0) q̇(θ0)) .

where l̃ν(θ0|Xi) = q̇T (θ0)I−1(θ0)l̇(θ0|Xi) and ν0 ≡ q(θ0).
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If the likelihood equations (2) are difficult to solve or have multiple roots, then it is possible to
use a one-step approximation. Suppose that θn is a preliminary estimator of θ and set

θ̌n ≡ θn + Î−1
n (θn)(n−1 l̇(θn|X)) .(3)

The estimator θ̌n is sometimes called a one-step estimator.

Theorem 1.3 Suppose that A0-A4 hold, and that θn satisfies n1/4(θn− θ0) = op(1); note that the
latter holds if

√
n(θn − θ0) = Op(1). Then

√
n(θ̌n − θ0) = I−1(θ0)Zn + op(1)→d Nd(0, I−1(θ0))

where Zn ≡ n−1/2
∑n

i=1 l̇(θ0|Xi).

Proof. Theorem 1.2. (i) Existence and consistency. For a > 0, let

Qa ≡ {θ ∈ Θ : |θ − θ0| = a} .

We will show that

P0{l(θ) < l(θ0) for all θ ∈ Qa}→ 1 as n→∞ .(a)

This implies that L has a local maximum inside Qa. Since the likelihood equations must be satisfied
at a local maximum, it will follow that for any a > 0 with probability converging to 1 that the
likelihood equations have a solution θ̃n(a) within Qa; taking the root closest to θ0 completes the
proof.

To prove (a), write

1
n

(l(θ)− l(θ0)) =
1
n

(θ − θ0)T l̇(θ0)−
1
2
(θ − θ0)T

(
− 1

n
l̈(θ0)

)
(θ − θ0)

+
1
6n

d∑

j=1

d∑

k=1

d∑

l=1

(θj − θj0)(θk − θk0)(θl − θl0)
n∑

i=1

γjkl(Xi)Mjkl(Xi)

= S1 + S2 + S3(b)

where, by A3(ii), 0 ≤ |γjkl(x)| ≤ 1. Furthermore, by A3(ii) and A4,

S1 →p 0 ,(c)

S2 →p −
1
2
(θ − θ0)T I(θ0)(θ − θ0) ,(d)

where

(θ − θ0)T I(θ0)(θ − θ0) ≥ λd|θ − θ0|2 = λda
2(e)

and λd is the smallest eigenvalue of I(θ0) (recall that supx(xT Ax)/(xT x) = λ1, infx(xT Ax)/(xT x) =
λd where λ1 ≥ . . . ≥ λd > 0 are the eigenvalues of A symmetric and positive definite), and

S3 →p
1
6

∑

j

∑

k

∑

l

(θj − θj0)(θk − θk0)(θl − θl0)Eγjkl(X1)Mjkl(X1) .(f)
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Thus for any given ε, a > 0, for n sufficiently large with probability larger than 1− ε, for all θ ∈ Qa,

|S1| < da3 ,(g)
S2 < −λda

2/4 ,(h)

and

|S3| ≤
1
3
(da)3

∑

j,k,l

mjkl ≡ Ba3(i)

where mjkl ≡ EMjkl(X). Hence, combining (g), (h), and (i) yields

sup
θ∈Qa

(S1 + S2 + S3) ≤ sup
θ∈Qa

|S1 + S3| + sup
θ∈Qa

S2(j)

≤ da3 + Ba3 − λd

4
a2

≤ (B + d)a3 − λd

4
a2 =

{
(B + d)a− λd

4

}
a2 .

The right side of (j) is < 0 if a < λd/{4(B + d)}, and hence (a) holds.

On the set

Gn ≡ {θ̃n solves l̇n(θ̃n) = 0 and |θ̃n − θ0| < ε}(k)

with P0(Gn)→ 1 as n→∞, we have

0 =
1√
n
l̇n(θ̃n) =

1√
n
l̇(θ0)− (−n−1l̈n(θ∗n))

√
n(θ̃n − θ0)(l)

where |θ∗n − θ0| ≤ |θ̃n − θ0|. Now from A4(i), (ii)

Zn ≡
1√
n
l̇n(θ0) =

1√
n

n∑

i=1

l̇(θ0|Xi)→d Nd(0, I(θ0)) .(m)

Furthermore

− 1
n
l̈n(θ∗n) = − 1

n
l̈n(θ0) + op(1)→p I(θ0)(n)

by using θ̃n →p θ0 and A3(ii) together with Taylor’s theorem. Since matrix inversion is continuous
(at nonsingular matrices), it follows that the inverse

(
− 1

n
l̈(θ∗n)

)−1

(o)

exists with high probability, and satisfies
(
− 1

n
l̈(θ∗n)

)−1

→p I(θ0)−1 .(p)

Hence we can use (l) to write, on Gn,
√

n(θ̃n − θ0) = I−1(θ0)Zn + op(1)(q)
→d I−1(θ0)Z ∼ Nd(0, I−1(θ0)) .
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This proves (ii).
It also follows from (n) that

√
n(θ̃n − θ0)T

(
− 1

n
l̈(θ̃n)

)√
n(θ̃n − θ0)→d ZT I−1(θ0)Z ∼ χ2

d ,(r)

and that, since I(θ) is continuous at θ0,
√

n(θ̃n − θ0)T I(θ̃n)
√

n(θ̃n − θ0)→d ZT I−1(θ0)Z ∼ χ2
d .(s)

To prove (iii), we write, on the set Gn,

l(θ0) = l(θ̃n) + l̇T (θ̃n)(θ0 − θ̃n)− 1
2
√

n(θ0 − θ̃n)T
(
− 1

n
l̈(θ∗n)

)√
n(θ0 − θ̃n)(t)

where |θ∗n − θ0| ≤ |θ̃n − θ0|. Thus

2 log λ̃n = 2{l(θ̃n)− l(θ0)}

= 0 + 2
1
2
√

n(θ̃n − θ0)T
(
− 1

n
l̈(θ∗n)

)√
n(θ̃n − θ0)

= DT
n I(θ0)Dn + op(1) , with Dn ≡

√
n(θ̃n − θ0)

→d DT I(θ0)D where D ∼ Nd(0, I−1(θ0))
∼ χ2

d .

Finally, (v) is trivial since everything is evaluated at the fixed point θ0. !

Proof. Theorem 1.3. First note that
1
n
l̈n(θn) =

1
n
l̈n(θ0) +

1
n

···
l n (θ∗n)(θn − θ0)

=
1
n
l̈n(θ0) + Op(1)|θn − θ0|

so that
(
− 1

n
l̈n(θn)

)−1

=
(
− 1

n
l̈n(θ0)

)−1

+ Op(1)|θn − θ0|(a)

and
1√
n
l̇n(θn) =

1√
n
l̇n(θ0) +

1
n
l̈n(θ0)

√
n(θn − θ0)(b)

+
1
2
√

n(θn − θ0)T
(

1
n

···
l n (θ∗n)

)
(θn − θ0) .

Therefore it follows that

√
n(θ̌n − θ0) =

√
n(θn − θ0) +

(
− 1

n
l̈n(θn)

)−1 1√
n
l̇n(θn)

=
√

n(θn − θ0)

+

{(
− 1

n
l̈n(θ0)

)−1

+ Op(1)|θn − θ0|
}
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·
{

Zn +
1
n
l̈n(θ0)

√
n(θn − θ0) +

1
2
√

n(θn − θ0)T
(

1
n

···
l n (θ∗n)

)
(θn − θ0)

}

=
(
− 1

n
l̈n(θ0)

)−1

Zn + Op(1)|θn − θ0|Zn

+ Op(1)
1
n
l̈n(θ0)

√
n|θn − θ0|2

+ Op(1)
1
2
√

n(θn − θ0)T
(

1
n

···
l n (θ∗n)

)
(θn − θ0)

= I−1(θ0)Zn + op(1) + Op(1)
√

n|θn − θ0|2

= I−1(θ0)Zn + op(1) .

Here we used
∣∣∣

1√
n

···
l n (θ∗n)(θn − θ0)(θn − θ0)

∣∣∣

=
∣∣∣

d∑

k=1

d∑

l=1

√
n(θnk − θ0k)(θnl − θ0l)

1
n

···
l jkl (θ∗n|X)

∣∣∣

≤ d3√n|θn − θ0|2
d∑

j=1

1
n

n∑

i=1

|
···
l jkl (θ∗n|Xi)|

= Op(1)
√

n|θn − θ0|2

since |θnk − θ0k| ≤ |θn − θ0| for k = 1, . . . , d and |x| ≤ dmax1≤k≤d |xk| ≤ d
∑d

k=1 |xk|. !

Exercise 1.1 Show that K(P,Q) ≥ 2H2(P,Q).
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2 The Wald, Likelihood ratio, and Score (or Rao) Tests

Let θ0 ∈ Θ be fixed. For testing

H : θ = θ0 versus K : θ %= θ0(1)

recall the three test statistics

2 log λ̃n ≡ 2{ln(θ̃n)− ln(θ0)} ,(2)

Wn ≡
√

n(θ̃n − θ0)T În(θ̃n)
√

n(θ̃n − θ0) ,(3)

and

Rn ≡ ZT
n I−1(θ0)Zn(4)

where

Zn ≡
1√
n
l̇n(θ0) =

1√
n
l̇n(θ0|X) .(5)

Theorem 1.2 described the null hypothesis behavior of these statistics; all three converge in distri-
bution to χ2

d when P0 = Pθ0 is true. We now examine their behavior under alternatives, i.e. for
X1, . . . ,Xn i.i.d. Pθ with θ %= θ0.

Theorem 2.1 (Fixed alternatives). Suppose that θ %= θ0 and A0 - A4 hold at both θ and θ0.
Then:

1
n

2 log λ̃n →p 2K(Pθ, Pθ0) = 2K(Ptrue, Phypothesized) > 0 ,(6)

1
n

Wn →p (θ − θ0)T I(θ)(θ − θ0) > 0 .(7)

If, furthermore,
A5. Eθ|l̇i(θ0|X)| <∞ for i = 1, . . . , d, holds, then

1
n

Rn →p Eθ{l̇(θ0|X)}T I−1(θ0)Eθ{l̇(θ0|X)} > 0(8)

if Eθ{l̇(θ0|X)} %= 0.

Proof. When θ %= θ0 is really true,

2
n

log λ̃n =
2
n
{l(θ̃n)− l(θ0)}(a)

=
2
n
{l(θ)− l(θ0)} +

2
n
{l(θ̃n)− l(θ)}

=
2
n

n∑

i=1

log
pθ
pθ0

(Xi) +
2
n
{l(θ̃n)− l(θ)}

→p 2Eθ

{
log

pθ
pθ0

(X)
}

+ 0 · χ2
d = 2K(Pθ, Pθ0)
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by the WLLN and Theorem 1.2. Also, by the Mann-Wald (or continuous mapping) theorem,

1
n

Wn = (θ̃n − θ0)T În(θ̃n)(θ̃n − θ0)→p (θ − θ0)T I(θ)(θ − θ0) ,(b)

and, since

1√
n

Zn =
1
n
l̇n(θ0) =

1
n

n∑

i=1

l̇(θ0|Xi)→p Eθ{l̇(θ0|X)} ,(c)

it follows that
1
n

Rn →p Eθ{l̇(θ0|X)}T I−1(θ0)Eθ{l̇(θ0|X)} .(d)

!

Corollary 1 (Consistency of the likelihood ratio, Wald, and score tests). If Assumptions A0-A5
hold, then the tests are consistent: i.e. if θ %= θ0, then

Pθ(LR test rejects H) = Pθ(2 log λ̃n ≥ χ2
d,α)→ 1 ,(9)

Pθ(Wald test rejects H) = Pθ(Wn ≥ χ2
d,α)→ 1 ,(10)

Pθ(score test rejects H) = Pθ(Rn ≥ χ2
d,α)→ 1 ,(11)

assuming that Eθ{l̇(θ0|X)} %= 0.

It remains to examine the behavior these three tests under local alternatives, θn = θ0 + tn−1/2

with t %= 0. We first examine Zn and θ̃n under θ0 using Le Cam’s third lemma 3.3.4.

Theorem 2.2 Suppose that A0-A4 hold. Then, if θn = θ0 + tn−1/2 is true, then under Pθn

√
n(θ̃n − θ0)→d D + t ∼ Nd(t, I−1(θ)) ;(12)

furthermore,

Zn(θ0) ≡
1√
n
l̇(θ0|X)→d Z + I(θ0)t ∼ Nd(I(θ0)t, I(θ0)) .(13)

Hence we also have under Pθn ,
√

n(θ̃n − θn) =
√

n(θ̃n − θ0)−
√

n(θn − θ0)(14)
→d D + t− t = D ∼ Nd(0, I−1(θ0)) ;

i.e. θ̃n is locally regular. Furthermore,

Zn(θn) = Zn(θ0)−
(
− 1

n
l̈n(θ∗n)

)√
n(θn − θ0)(15)

→d Z + I(θ0)t− I(θ0)t = Z ∼ Nd(0, I(θ0)) .
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Proof. From the proof of theorem 1.2 we know that θ̃n is asymptotically linear under P0 = Pθ0 :

√
n(θ̃n − θ0) =

1√
n

n∑

i=1

l̃θ(θ0|Xi) + op(1)

where l̃θ(x) ≡ I−1(θ0)l̇θ(x). Furthermore, it follows from theorem 1.2 part (vi) that the log likeli-
hood ratio is asymptotically linear:

log
dPn

θn

dPn
θ0

= l(θn)− l(θ0) = tTZn −
1
2
tT I(θ0)t + op(1) .

Let a ∈ Rd. Then with Tn ≡ aT√n(θ̃n − θ0) it follows from the multivariate CLT that
(

Tn

log
dP n

θn
dP n

θ0

)

=

(
aT√n(θ̃n − θ0)

log
dP n

θn
dP n

θ0

)

=
1√
n

n∑

i=1

(
aT l̃θ(θ0|Xi)
tT l̇θ(θ0|Xi)

)
+
(

0
−σ2/2

)
+ op(1)

→d N2

((
0

−σ2/2

)
,

(
aT I−1(θ0)a aT t

aT t σ2

))
.

Thus the hypothesis of Le Cam’s third lemma 3.3.4 is satisfied with c = aT t, and we deduce that,
under Pθn ,

(
aT√n(θ̃n − θ0)

log
dP n

θn
dP n

θ0

)

→d N2

((
aT t

+σ2/2

)
,

(
aT I−1(θ0)a aT t

aT t σ2

))
.

In particular, under Pθn ,

aT√n(θ̃n − θ0)→d N(aT t, aT I−1(θ0)a) ,

and by the Cramér - Wold device this implies that under Pθn

√
n(θ̃n − θ0)→d Nd(t, I−1(θ0)) .

This, in turn, implies that
√

n(θ̃n − θn)→d Nd(0, I−1(θ0)) .

under Pθn . The proof of the second part is similar, but easier, by taking Tn ≡ aT Zn(θ0) which is
already a linear statistic. !

Corollary 1 If A0-A4 hold, then if θn = θ0 + tn−1/2, under Pθn :

2 log λ̃n →d (D + t)T I(θ0)(D + t) ∼ χ2
d(δ) ,(16)

Wn →d (D + t)T I(θ0)(D + t) ∼ χ2
d(δ) ,(17)

Rn →d (Z + I(θ0)t)T I−1(θ0)(Z + I(θ0)t) = (D + t)T I(θ0)(D + t) ∼ χ2
d(δ)(18)

where δ = tT I(θ0)t.
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Proof. This follows from theorem 2.2, the Mann - Wald theorem, and the fact that

X ∼ Nd(µ,Σ) implies XTΣ−1X ∼ χ2
d(δ)

with δ = µTΣ−1µ. !

Corollary 2 If A0 - A4 hold, then with Tn = 2 log λ̃n, Wn, or Rn,

Pθn(Tn ≥ χ2
d,α)→ P (χ2

d(δ) ≥ χ2
d,α) .(19)

Three Statistics for Testing a Composite Null Hypothesis

Now consider testing θ ∈ Θ0 ≡ {θ ∈ Θ : θ1 = θ10}; i.e.

H : θ1 = θ10, θ2 = anything versus K : θ = (θ1, θ2) %= (θ10, θ2)

where θ ≡ (θ1, θ2) ∈ Rm × Rd−m = Rd. Recall the corresponding partitioning of I(θ) and I−1(θ)
and the matrices I11·2, I22·1 introduced in section 3.2.

The likelihood ratio, Wald, and Rao (or score) statistics for testing H versus K are

2 log λn with λn ≡
supθ∈Θ L(θ|X)
supθ∈Θ0 L(θ|X)

=
L(θ̂n|X)
L(θ̂0n|X)

(20)

(or

2 log λ̃n with λ̃n ≡
L(θ̃n|X)
L(θ̃0n|X)

(21)

where θ̃n, θ̃0n are consistent solutions of the likelihood equations under K and H respectively);

Wn ≡
√

n(θ̃n1 − θ10)T Î11·2
√

n(θ̃n1 − θ10) ,(22)

and

Rn ≡ ZT
n (θ̂0n)I−1(θ̂0n)Zn(θ̂0n)(23)

where θ̂0n (θ̃0n) is an MLE (ELE) of θ ∈ Θ0.
Now under H : θ ∈ Θ0 we have

√
n(θ̃n1 − θ10)→d D1 ∼ Nm(0, I−1

11·2)(24)

where

D =
(

D1

D2

)
= I−1(θ0)Z =

(
I−1
11·2(Z1 − I12I

−1
22 Z2)

I−1
22·1(Z2 − I21I

−1
11 Z1)

)

and

Zn(θ̃0n) =

(
Zn1(θ̃0n)
Zn2(θ̃0n)

)

=
(

Zn1(θ0)− I12(θ∗n)
√

n(θ̃0n2 − θ02) + op(1)
0

)

=
(

Zn1(θ0)− I12(θ0)I−1
22 Zn2(θ0) + op(1)
0

)

→d

(
Z1(θ0)− I12(θ0)I−1

22 Z2(θ0)
0

)
∼
(

Nm(0, I11·2)
0

)
.(25)
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The natural consequences of (24) and (25) for the likelihood ratio, Wald, and Rao statistics are
summarized in the following theorem.

Theorem 2.3 (Likelihood ratio, Wald, Rao statistics for composite null under null). If A0 - A4
hold and θ0 ∈ Θ0 is true, then






2 log λ̃n

Wn

Rn




→d DT
1 I11·2D1 ∼ χ2

m = χ2
d−(d−m) .

Proof. That Wn →d DT
1 I11·2D1 follows from (24) and consistency of Î11·2. Similarly,

Rn →d DT
1 I11·2D1 follows from (25) and Î−1

n (θ̂0n)→p I−1(θ0). To prove the claimed convergence of
2 log λ̃n, write

2 log λ̃n = 2{ln(θ̃n)− ln(θ̃0n)
= 2{ln(θ̃n)− ln(θ0)− (ln(θ̃0n)− ln(θ0))}

where

2{ln(θ̃n)− ln(θ0)}→d DT I(θ0)D = ZT I−1(θ0)Z(a)

by our proof of theorem 1.2, and

2{ln(θ̃0n)− ln(θ0)}→d ZT
2 I−1

22 (θ0)Z2 ,(b)

again by the proof of theorem 1.2. In fact, by the asymptotic linearity of θ̃n (and θ̃0n) proved there,
the convergences in (a) and (b) imply that

2 log λ̃n →d ZT I−1(θ0)Z − ZT
2 I−1

22 Z2

= (Z1 − I12I
−1
22 Z2)T I−1

11·2(Z1 − I12I
−1
22 Z2)

= DT
1 I11·2D1

where we have used the block inverse form of I−1(θ0) given in (3.2.x) and the matrix identity
(3.2.15) with the roles of “1” and “2” interchanged. !

Now under local alternatives the situation is as follows:

Theorem 2.4 If A0 - A4 hold, and θn = θ0 + tn−1/2 with θ0 ∈ Θ0, then under Pθn






2 log λ̃n

Wn

Rn




→d (D1 + t1)T I11·2(D1 + t1) ∼ χ2
m(δ) = χ2

d−(d−m)(δ)

whre δ = tT1 I11·2t1.
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3 Selected Examples

Now we consider several example to illustrate the theory of the preceding two sections and its
limitations.

Example 3.1 Let X1, . . . ,Xn be i.i.d. N(µ,σ2); θ = (µ,σ2) ∈ Θ = R×R+. Consider

(i) Estimation of θ.

(ii) Testing H1 : µ = 0 versus K1 : µ %= 0.

(iii) Testing H2 : θ = (0,σ2
0) ≡ θ0 versus K2 : θ %= θ0.

(i) Now the likelihood function is:

L(θ) = (2πσ2)−n/2 exp

(

− 1
2σ2

n∑

i=1

(Xi − µ)2
)

.

Thus the MLE of θ is

θ̂n = (Xn, S2) where S2 =
1
n

n∑

i=1

(Xi −Xn)2 ,

and

I(θ) =
(

1
σ2 0
0 1

2σ4

)

since

l(θ|X1) = − 1
2σ2

(X1 − µ)2 − 1
2

log σ2

so that

l̇µ(X1) =
1
σ2

(X1 − µ) , l̈µµ(X1) = − 1
σ2

,

l̇σ2(X1) =
(X1 − µ)2

2σ4
− 1

2σ2
, l̈σ2σ2(X1) = − (X1 − µ)2

σ6
+

1
2σ4

.

Now

θ̂n = (Xn, S2
n)→a.s. (µ,σ2) = θ ,(1)

and
√

n(θ̂n − θ)→d N2(0, I−1(θ))(2)

with

I−1(θ) =
(
σ2 0
0 2σ4

)
.(3)

The almost sure consistency stated in (1) and the limiting distribution in (2) follow from direct
application of the strong law of large numbers (proposition 2.2.2) and the central limit theorem
(proposition 2.2.3 ) respectively, after easy manipulations and Slutsky’s theorem. Alternatively, the
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in probability version of (1) and the limiting distribution in (2) follow from theorem 1.2 assuming
that the normal model for the Xi’s holds.

(ii). The likelihood ratio statistic for testing H1 is

λn =
L(θ̂n)
L(θ̂0n)

=
L(X,S2)

L(0, n−1
∑n

1 X2
i )

=
{

n−1∑n
1 X2

i

n−1
∑n

1 (Xi −X)2

}n/2

,

and hence

2 log λn = −n log

(
1− X

2

n−1
∑n

1 X2
i

)
;

note that − log(1− x) ∼ x for x→ 0. The Wald statistic is

Wn = {
√

n(X − 0)}Î11·2{
√

n(X − 0)} =
nX

2

S2
=
{√

n X

S

}2

.

Finally, the Rao or score statistic is

Rn = Zn(θ̂0n)T I(θ̂0n)−1Zn(θ̂0n)

=

( √
nXn

n−1
Pn

1 X2
i

0

)T (
n−1∑n

1 X2
i 0

0 2(n−1∑n
1 X2

i )2

)( √
nXn

n−1
Pn

1 X2
i

0

)T

=






√
nXn√

n−1
∑n

1 X2
i






2

.

If θ = θ0 = (0,σ2) so H1 holds, then

2 log λn, Wn, Rn →d χ
2
1 .

If µ %= 0, so θ /∈ Θ1, then

1
n

2 log λn →p − log
(

1− µ2

σ2 + µ2

)
= − log

(
σ2

σ2 + µ2

)
> 0 ,

1
n

Wn →p
µ2

σ2
> 0 , and

1
n

Rn →p
µ2

σ2 + µ2
> 0 .

(iii) The likelihood ratio statistic λn for testing H2 is

λn =
L(X,S2)
L(0,σ2

0)
=

(2πS2)−n/2 exp(−n/2)
(2πσ2

0)−n/2 exp(−
∑n

1 X2
i /2σ2

0)

=
(

S2

σ2
0

)−n/2

exp

(
1

2σ2
0

n∑

1

X2
i − n/2

)

so that

2 log λn =
1
σ2

0

n∑

1

X2
i − n− n log

(
S2

σ2
0

)

= n

{
S2

σ2
0

− 1− log
(

S2

σ2
0

)}
+

nX
2

σ2
0

.
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The Wald statistic is

Wn =
( √

n(X − 0)√
n(S2 − σ2

0)

)T ( 1/S2 0
0 1/(2S4)

)( √
n(X − 0)√

n(S2 − σ2
0)

)

=
nX

2

S2
+

{
√

n(S2 − σ2
0)}2

2S4
.

The Rao or score statistic is given by

Rn =

( √
nX/σ2

0
1
2

√
n

σ2
0

{
n−1 Pn

1 X2
i

σ2
0

− 1
}
)T (

σ2
0 0
0 2σ4

0

)( √
nX/σ2

0
1
2

√
n

σ2
0

{
n−1 Pn

1 X2
i

σ2
0

− 1
}
)

=
nX

2

σ2
0

+
n

2

{
n−1
∑n

1 X2
i

σ2
0

− 1
}2

.

If H2 holds, then

2 log λn, Wn, Rn →d χ2
2 .

Exercise 3.1 What are the limits in probability of n−12 log λn, n−1Wn, and n−1Rn under θ %= θ0?

Exercise 3.2 In the context of Example 3.1, what are the likelihood ratio, Wald, and score statis-
tics for testing H3 : σ2 = σ2

0 versus K3 : σ2 %= σ2
0?

Example 3.2 (One parameter exponential family). Suppose that pθ(x) = exp(θT (x)−A(θ)) with
respect to µ. Then

l̇θ(x) = T (x)−A′(θ), I(θ) = V arθ(T (X)) ,

and the likelihood equation may be written as

1
n

n∑

i=1

T (Xi) = A′(θ) .

Now A′(θ) = Eθ{T (X)}, and A′′(θ) = V arθ(T (X)) > 0, so the right side in (4) is strictly increasing
in θ. Thus (4) has at most one root θ̂n, and

√
n(θ̂n − θ)→d N(0, 1/I(θ)) = N(0, 1/V arθ(T (X))) .(4)

Example 3.3 (Multi-parameter exponential family; Lehmann and Cassella, TPE, pages 23 - 32).
Suppose that

pθ(x) = exp






d∑

j=1

ηj(θ)Tj(x)−B(θ)




h(x)

with respect to some dominating measure µ. Here B : Θ → R and ηj : Θ → R, Tj : X → R for
j = 1, . . . , d. Here Θ ⊂ Rk for some k. It is frequently convenient to use the ηj ’s as the parameters
and write the density in the canonical form

pη(x) ≡ p(x; η) = exp






d∑

j=1

ηjTj(x)−A(η)




 h(x) .
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The natural parameter space Ξ of the family is

Ξ ≡ {η ∈ Rd :
∫

exp{ηT T (x)}h(x)dµ(x) <∞} .

We will assume that the Tj ’s are affinely independent: i.e. there do not exist constants a1, . . . , ad

and b ∈ R such that
∑d

j=1 ajTj(x) = b with probability 1.
By Lehmann and Casella, TPE, theorem 5.8, page 27, we can differentiate under the expecta-

tions to find that the score vector for η is given by

l̇ηj (x) = Tj(x)− ∂

∂ηj
A(η), j = 1, . . . , d ,

and since this has expectation 0 under pη,

0 = Eη(Tj(X)) − ∂

∂ηj
A(η), j = 1, . . . , d .

If the likelihood equations have a solution, it is unique (and is the MLE) since l(η) is a strictly
concave function of η in view of the fact that l(η) has Hessian (times minus one)

l̈(η|X) = −
(

∂2

∂ηj∂ηl
l(η)
)

=
(

∂2

∂ηj∂ηl
A(η)

)
= (Covη[Tj(X), Tl(X)])

which is positive definite by the assumption of affine independence of the Tj ’s.

Example 3.4 (Cauchy location family). Suppose that pθ(x) = g(x−θ) with g(x) = π−1(1+x2)−1,
x ∈ R. Then

l̇θ(X) = − g′

g
(X − θ) =

2(X − θ)
1 + (X − θ)2 ,

I(θ) = 1/2, and the likelihood equation becomes

l̇θ(θ|X) =
n∑

i=1

l̇θ(Xi) = 2
n∑

i=1

Xi − θ)
1 + (Xi − θ)2

= 0

if and only if

0 =
n∑

i=1

(Xi − θ)
∏

j '=i

{1 + (Xj − θ)2} ,

where the right side is a polynomial in θ of degree 2(n− 1) + 1 = 2n− 1 which could have as many
as 2n− 1 roots. Let θn ≡ median(Xi) = F−1

n (1/2). Then
√

n(θn − θ)→d N(0,π2/4) ,

and the one-step adjustment or “method of scoring”) estimator is

θ̌n = θn + Î(θn)−1

(
1
n

n∑

i=1

l̇θ(Xi; θn)

)

= θn +
4
n

n∑

i=1

Xi − θn
1 + (Xi − θn)2

.
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Remark: Let rn denote the (random) number of roots of the likelihood equation. Then with
probability one the roots are simple, and they alternately correspond to local minima and local
maxima of the likelihood. Thus rn is odd, there are (rn + 1)/2 local maxima, (rn − 1)/2 local
minima, and one global maximum. Thus the number of roots corresponding to “false” maxima is
(rn− 1)/2. Reeds (1985) shows that (rn− 1)/2 →d Poisson(1/π), so that as n→∞ we can expect
to see relatively few roots corresponding to local maxima which are not global maxima. In fact,

P ((rn − 1)/2 ≥ 1)→ P (Poisson(1/π) ≥ 1) = 1− e−1/π = .272623....

Example 3.5 (Normal mixture models; see TPE, page 442, example 5.6). Suppose that

pθ(x) = pN(µ,σ2) + (1− p)N(ν, τ2)

= p
1√

2πσ2
exp
(
−(x− µ)2

2σ2

)
+ (1− p)

1√
2πτ2

exp
(
−(x− ν)2

2τ2

)

with θ = (p, µ,σ, ν, τ). The simpler case of θ = (1/2, µ,σ, 0, 1) will illustrate the phenomena we
want to illustrate here. When θ = θ0 we may reparametrize by θ = (µ,σ) ∈ R×R+ = Θ, and the
density can be written as

pθ(x) =
1
2
φ(x) +

1
2

1
σ
φ

(
x− µ

σ

)
.(5)

Then, if X1, . . . ,Xn are i.i.d. pθ,

sup
θ∈Θ

L(θ|X) =∞ almost surely.

To see this, take µ = any Xi, and then let σ → 0. Thus MLE’s do not exist.
However, A0 - A4 hold for this model, and hence there exists a consistent, asymptotically

efficient sequence of roots of the likelihood equations. Alternatively, one-step estimators starting
with moment estimators are also asymptotically efficient.

Example 3.6 (An inconsistent MLE). Suppose that

pθ(x) = θ
1
2
1[−1,1](x) +

1− θ
δ(θ)

(
1− |x− θ|

δ(θ)

)
1A(θ)(x)

where θ ∈ Θ ≡ [−1, 1], δ ≡ δ(θ) is decreasing and continuous with δ(0) = 1 and 0 < δ(θ) ≤ 1 − θ
for 0 < θ < 1, and A(θ) ≡ θ − δ(θ), θ + δ(θ)].

Note that p0(x) = (1− |x|)1[−1,1](x) ≡ triangular density, while p1(x) = 2−11[−1,1](x) = uniform
density.

Note that A0-A2 hold, and, in addition, pθ(x) is continuous in θ for all x. Thus a MLE exists
for all n ≥ 1 since a continuous function on a compact set [0, 1] achieves its maximum on that set.

Proposition 3.1 (Ferguson). Let θ̂n ≡ an MLE of θ for sample size n. If δ(θ) → 0 rapidly
enough as θ → 1, then θ̂n → 1 a.s. Pθ as n → ∞ for every θ ∈ [0, 1]. In fact, the function
δ(θ) = (1− θ) exp(−(1− θ)−4 +1) works; for this choice of δ(θ) it follows that n1/4(1−Mn)→a.s. 0
where Mn = max{X1, . . . ,Xn}.

The details of this example are written out in Ferguson’s A Course in Large Sample Theory,
pages 116 - 117. The hypothesis that is violated in this example is that the family of log-likelihoods
fails to have an integrable envelope.
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Other examples of inconsistent MLE’s are given by Le Cam (1990) and by Boyles, Marshall, and
Proschan (1985). Here is another situation in which the MLE fails, though for somewhat different
reasons.

Example 3.7 (Neyman-Scott). Suppose that (Xi, Yi) ∼ N2((µi, µi),σ2I) for i = 1, . . . , n. Con-
sider estimation of σ2. Now Zi ≡ Xi − Yi ∼ N(0, 2σ2), and therefore

1
2n

n∑

i=1

Z2
i ∼ σ2χ

2
n

n

is an unbiased and consistent estimator of σ2. However

L(θ|X,Y ) = (2πσ2)−n exp

(
− 1

2σ2

n∑

i=1

{(Xi − µi)2 + (Yi − µi)2}
)

and therefore the MLE of µi is µ̂i = (Xi + Y2)/2 and it follows that the MLE of σ2 is

σ̂2 =
1
4n

n∑

i=1

Z2
i =

1
2n

{
n∑

i=1

(Xi − µ̂i)2 +
n∑

i=1

(Yi − µ̂i)2
}

.

Thus σ̂2
n →a.s. σ2/2 as n→∞. What went wrong? note that the dimensionality of the parameter

space for this model is n+1 which increases with n, so the theory we have developed so far does not
apply. One way out of this difficulty was proposed by Kiefer and Wolfowitz (1956) in their paper
on “Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance
parameters”, Ann. Math. Statist. 27, 887 - 906. For results on asymptotic normality of the
MLE’s in the semiparametric mixture models proposed by Kiefer and Wolfowitz (1956), see Van
der Vaart (1996), “Efficient maximum likelihood estimation in semiparametric mixture models”,
Ann. Statist. 24, 862-878.

Example 3.8 (Bivariate Poisson model). Suppose that U ∼ Poisson(µ), V ∼ Poisson(λ), and
W ∼ Poisson(ψ) are all independent, and let

X ≡ U + W , Y = V + W .

Then X ∼ Poisson(µ + ψ), Y ∼ Poisson(λ+ ψ), and jointly

(X,Y ) ∼ bivariate Poisson(µ,λ,ψ) :

for positive integers x and y

Pθ(X = x, Y = y;µ,λ,ψ) =
x∧y∑

w=0

µx−wλy−wψw

w!(x− w)!(y −w)!
e−(λ+µ+ψ)

where θ = (µ,λ,ψ). Thus under ψ = 0, X and Y are independent (ψ = 0 implies W = 0 a.s. and
then X = U and Y = V a.s.).

Consider testing H : ψ = 0 (independence) versus K : ψ > 0 based on a sample of n i.i.d.
pairs from Pθ. Note that maximum likelihood estimation of θ = (µ,λ,ψ) for general θ is not
at all simple, so both the Wald and LR statistics must be calculated numerically. However, for
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θ ∈ Θ0 ≡ {θ ∈ Θ : ψ = 0}, X and Y are just independent Poisson rv’s and some calculation shows
that the scores, for any point θ0 = (λ, µ, 0) ∈ Θ0 are given by

l̇µ(X,Y ; θ0) = −1 +
X

µ
,

l̇µ(X,Y ; θ0) = −1 +
Y

λ
,

l̇ψ(X,Y ; θ0) = −1 +
XY

µλ
.

Hence, under H the MLE of θ is θ̂0n = (Xn, Y n, 0), and the Rao or score statistic for testing H is

Rn = n

{
n−1∑n

i=1 XiYi

XnY n
− 1
}2

XnY n

= n

{
n−1∑n

i=1 XiYi −XnY n
}2

XnY n
.

since

I(θ0) =




1/µ 0 1/µ
0 1/λ 1/λ

1/µ 1/λ 1/µ + 1/λ+ 1/(µλ)



 ,

so that

I22·1 = I22 − I21I
−1
11 I12

= 1/µ + 1/λ + 1/(µλ) − (1/µ, 1/λ)
(

µ 0
0 λ

)(
1/µ
1/λ

)

= 1/(µλ) .

Note that Rn is a close relative of the classical correlation coefficient, and in fact, under H it follows
fairly easily that Rn = nr2

n + op(1).
Note that the parameter space for this model is Θ = {(µ,λ,ψ) : µ > 0, λ > 0, ψ ≥ 0}, which is

not closed. Moreover, the points in the null hypothesis ψ = 0 are on a boundary of the parameter
space. Thus the theory we have developed does not quite apply. Nevertheless, under H we have
Rn →d χ2

1.

Example 3.9 (The Multinomial Distribution). Suppose that X1, . . . ,Xn are i.i.d. Multk(1, p).
Then

Nn ≡
n∑

i=1

Xi ∼ Multk(n, p) .

Then the log likelihood is

l(p|X) = log

{
n∏

i=1

1!
Xi1! · · ·Xik!

pXi1
1 · · · pXik

k

}

=
k∑

j=1

Nj log pj +
n∑

i=1

log
(

1!
Xi1! · · ·Xik!

)
,
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and the constrained log likelihood is

l(p,λ|X) = log

{
n∏

i=1

1!
Xi1! · · ·Xik!

pXi1
1 · · · pXik

k

}
+ λ(

k∑

j=1

pj − 1)

=
k∑

j=1

Nj log pj + λ(
k∑

j=1

pj − 1) + constant in p .

Thus the likelihood equations are

0 = l̇pj(p,λ|X) =
Nj

pj
+ λ , j = 1, . . . , k

and

0 =
k∑

j=1

pj − 1 .

The solution of the first set of k equations yields

p̂j = −Nj

λ
, j = 1, . . . , k .

But to satisfy the constraint we must have

1 =
k∑

j=1

p̂j = −n

λ
,

or λ = −n, and thus the MLE of p is p̂ = Nn/n. The score vector (for n = 1) becomes

l̇(p|X1) =
(

X1j

pj
− 1
)

=
(

X1j − pj

pj

)

j=1,...,k

.

Thus the information matrix is

I(p) = E{l̇(p|X1)l̇(p|X1)
T } = diag(1/pj)(diag(pj)− ppT )diag(1/pj)

= diag(1/pj)− 1 1T .

Since I(p)p = 1 − 1 = 0, this matrix is singular. But note that it has a generalized inverse given
by I−(p) = diag(pj)− ppT :

I(p)I−(p)I(p) = I(p) .

In fact, we know by direct calculations and the multivariate CLT that
√

n(p̂
n
− p)→d Nk(0, I−(p)) .

Note that the natural Rao statistic is in fact the usual chi-square statistic:

ZT
n (p

0
)I−(p

0
)Zn(p

0
) =

k∑

j=1

(Nj − npj0)2

npj0
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where

Zn(θ0) =
1√
n

(
N1 − np10

p10
, . . . ,

Nk − npk0

pk0

)T

and

I−(p
0
) = diag(pj0)− p

0
pT
0

.

The Wald statistic is given by

√
n(p̂

n
− p)T Î(p̂)

√
n(p̂

n
− p) =

k∑

j=1

(Nj − npj0)2

np̂j
.

For more on problems involving singular information matrices, see Rotnitzky, Cox, Bottai, and
Robins (2000).
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4 Consistency of Maximum Likelihood Estimators

Some Uniform Strong Laws of Large Numbers

Suppose that:

A. X,X1, . . . ,Xn are i.i.d. P on the measurable space (X ,A).

B. For each θ ∈ Θ, f(x, θ) is a measurable, real-valued function of x, f(·, θ) ∈ L1(P ).

Let F = {f(·, θ) : θ ∈ Θ}. Since f(·, θ) ∈ L1(P ) for each θ,

g(θ) ≡ Ef(X, θ) =
∫

f(x, θ)dP (x) ≡ Pf(·, θ)

exists and is finite. Moreover, by the strong law of large numbers,

Pnf(·, θ) ≡
∫

f(x, θ)dPn(x) =
1
n

n∑

i=1

f(Xi, θ)

→a.s. Ef(X, θ) = Pf(·, θ) = g(θ).(1)

It is often useful and important to strengthen (1) to hold uniformly in θ ∈ Θ:

sup
θ∈Θ

|Pnf(·, θ)− Pf(·, θ)|→a.s. 0 .(2)

Note that the left side in (2) is equal to

‖Pn − P‖F ≡ sup
f∈F

|Pnf − Pf | .

Here is how (2) can be used: suppose that we have a sequence θ̂n of estimators, possibly dependent
on X1, . . . ,Xn, such that θ̂n →a.s. θ0. Suppose that g(θ) is continuous at θ0. We would like to
conclude that

Pnf(·, θ̂n) =
1
n

n∑

i=1

f(Xi, θ̂n)→a.s. g(θ0).(3)

The convergence (3) does not follow from (1); but (3) does follow from (2):
∣∣∣Pnf(·, θ̂n)− g(θ0)

∣∣∣ ≤
∣∣∣Pnf(·, θ̂n)− g(θ̂n)

∣∣∣+
∣∣∣g(θ̂n)− g(θ0)

∣∣∣

≤ sup
θ∈Θ

∣∣∣Pnf(·, θ)− g(θ)
∣∣∣+
∣∣∣g(θ̂n)− g(θ0)

∣∣∣

= ‖Pn − P‖F +
∣∣∣g(θ̂n)− g(θ0)

∣∣∣
→a.s. 0 + 0 = 0 .

The following theorems, due to Le Cam, give conditions on f and P under which (2) holds. The first
theorem is a prototype for what are now known in empirical process theory as “Glivenko-Cantelli
theorems”.
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Theorem 4.1 Suppose that:
(a) Θ is compact.
(b) f(x, ·) is continuous in θ for all x.
(c) There exists a function F (x) such that EF (X) <∞ and |f(x, θ)| ≤ F (x) for all x ∈ X , θ ∈ Θ.
Then (2) holds; i.e.

sup
θ∈Θ

|Pnf(·, θ)− Pf(·, θ)|→a.s. 0 .

The second theorem is a “one-sided” version of theorem 4.1 which is useful for the theory of
maximum likelihood estimation.

Theorem 4.2 Suppose that:
(a) Θ is compact.
(b) f(x, ·) is upper semicontinuous in θ for all x; i.e. lim supn→∞ f(x, θn) ≤ f(x, θ) for all θn → θ
and all θ ∈ Θ.
(c) There exists a function F (x) such that EF (X) <∞ and f(x, θ) ≤ F (x) for all x ∈ X , θ ∈ Θ.
(d) For all θ and all sufficiently small ρ > 0

sup
|θ′−θ|<ρ

f(x, θ′)

is measurable in x.
Then

limsupn→∞ sup
θ∈Θ

Pnf(·, θ) ≤a.s. sup
θ∈Θ

Pf(·, θ) = sup
θ∈Θ

g(θ).

We proceed by first proving Theorem 4.2. Then Theorem 4.1 will follow as a consequence of
Theorem 4.2.

Proof. Theorem 4.2. Let

ψ(x, θ, ρ) ≡ sup
|θ′−θ|<ρ

f(x, θ′).

Then ψ is measurable (for ρ sufficiently small), bounded by an integrable function F , and

ψ(x, θ, ρ)↘ f(x, θ) as ρ↘ 0 by (b).

Thus by the monotone convergence theorem
∫
ψ(x, θ, ρ)dP (x) ↘

∫
f(x, θ)dP (x) = g(θ).

Let ε > 0. For each θ, find ρθ so that
∫
ψ(x, θ, ρθ)dP (x) < g(θ) + ε .

The spheres
S(θ, ρθ) = {θ′ : |θ′ − θ| < ρθ}
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cover Θ, so by (a) there exists a finite sub cover: Θ ⊂ ∪m
j=1S(θj , ρθj ). for each θ ∈ Θ there is some

j, 1 ≤ j ≤ m, such that θ ∈ S(θj , ρθj ); hence from the definition of ψ it follows that

f(x, θ) ≤ ψ(x, θj , ρθj )

for all x. Therefore
Pnf(·, θ) ≤ Pnψ(·, θj , ρθj ),

and hence

sup
θ∈Θ

Pnf(·, θ) ≤ sup
1≤j≤m

Pnψ(·, θj , ρθj )

→a.s. sup
1≤j≤m

Pψ(·, θj , ρθj )

≤ sup
1≤j≤m

g(θj) + ε

≤ sup
θ∈Θ

g(θ) + ε .

We conclude that
limsupn→∞ sup

θ∈Θ
Pnf(·, θ) ≤a.s. sup

θ∈Θ
g(θ) + ε .

Letting ε ↓ 0 completes the proof. !

Proof. Theorem 4.1. Since f is continuous in θ, condition (d) of Theorem 2 is satisfied: for

any countable set D dense in {θ′ : |θ′ − θ| < ρ},

sup
|θ′−θ|<ρ

f(x, θ′) = sup
θ′∈D

f(x, θ′)

where the right side is measurable since it is a countable supremum of measurable functions.
Furthermore, g(θ) is continuous in θ:

g(θ) = lim
θ′→θ

g(θ′) = lim
θ′→θ

∫
f(x, θ′)dP (x) =

∫
f(x, θ)dP (x)

by the dominated convergence theorem. Now Theorem 4.1 follows from Theorem 4.2 applied to
the functions h(x, θ) ≡ f(x, θ)− g(θ) and −h(x, θ): by Theorem 4.2 applied to {h(x, θ) : θ ∈ Θ},

limsupn→∞ sup
θ∈Θ

(Pnf(·, θ)− g(θ)) ≤ 0 a.s.

By Theorem 4.2 applied to {−h(x, θ) : θ ∈ Θ},

limsupn→∞ sup
θ∈Θ

(g(θ)) − Pnf(·, θ)) ≤ 0 a.s.

The conclusion of Theorem 4.1 follows since

0 ≤ sup
θ∈Θ

|Pnf(·, θ)− g(θ)|

= sup
θ∈Θ

(Pnf(·, θ)− g(θ)) ∨ sup
θ∈Θ

(g(θ)− Pnf(·, θ)) .

!

For our application of Theorem 4.2 to consistency of maximum likelihood, the following Lemma
will be useful.
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Lemma 4.1 If the conditions of Theorem 4.2 hold, then g(θ) is upper-semicontinuous: i.e.

limsupθ′→θg(θ′) ≤ g(θ).

Proof. Since f(x, θ) is upper semicontinuous,

limsupθ′→θf(x, θ′) ≤ f(x, θ) for all x ;

i.e.
liminfθ′→θ

{
f(x, θ)− f(x, θ′)

}
≥ 0 for all x .

Hence it follows by Fatou’s lemma that

0 ≤ Eliminfθ′→θ

{
f(X, θ)− f(X, θ′)

}

≤ liminfθ′→θE
{
f(X, θ)− f(X, θ′)

}

= Ef(X, θ)− limsupθ′→θEf(X, θ′) ;

i.e.
limsupθ′→θEf(X, θ′) ≤ Ef(X, θ) = g(θ) .

!

Now we are prepared to tackle consistency of maximum likelihood estimates.

Theorem 4.3 (Wald, 1949). Suppose that X,X1, . . . ,Xn are i.i.d. Pθ0 , θ0 ∈ Θ with density
p(x, θ0) with respect to the dominating measure ν, and that:
(a) Θ is compact.
(b) p(x, ·) is upper semi-continuous in θ for all x.
(c) There exists a function F (x) such that EF (X) <∞ and

f(x, θ) ≡ log p(x, θ)− log p(x, θ0) ≤ F (x)

for all x ∈ X , θ ∈ Θ.
(d) For all θ and all sufficiently small ρ > 0

sup
|θ′−θ|<ρ

p(x, θ′)

is measurable in x.
(e) p(x, θ) = p(x, θ0) a.e. ν implies that θ = θ0.
Then for any sequence of maximum likelihood estimates θ̂n of θ0,

θ̂n →a.s. θ0 .

Proof. Let ρ > 0. The functions {f(x, θ) : θ ∈ Θ} satisfy the conditions of theorem 4.2. But
we will apply Theorem 4.2 with Θ replaced by the subset

S ≡ {θ : |θ − θ0| ≥ ρ} ⊂ Θ .
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Then S is compact, and by Theorem 4.2

Pθ0

(
limsupn→∞ sup

θ∈S
Pnf(·, θ) ≤ sup

θ∈S
g(θ)
)

= 1

where

g(θ) = Eθ0f(X, θ) = Eθ0

{
log

p(X, θ)
p(X, θ0)

}
= −K(Pθ0 , Pθ) < 0 for θ ∈ S.

Furthermore by the Lemma, g(θ) is upper semicontinuous and hence achieves its supremum on the
compact set S. Let δ = supθ∈S g(θ). Then by Lemma 4.1.1 and the identifiability assumption (e),
it follows that δ < 0 and we have

Pθ0

(
limsupn→∞ sup

θ∈S
Pnf(·, θ) ≤ δ

)
= 1 .

Thus with probability 1 there exists an N such that for all n > N

sup
θ∈S

Pnf(·, θ) ≤ δ/2 < 0 .

But

Pnf(·, θ̂n) = sup
θ∈Θ

Pnf(·, θ) = sup
θ∈Θ

1
n
{ln(θ)− ln(θ0)} ≥ 0 .

Hence θ̂n /∈ S for n > N ; that is, |θ̂n − θ0| < ρ with probability 1. Since ρ was arbitrary, θ̂n is a.s.
consistent. !

Remark 4.1 Theorem 4.3 is due to Wald (1949). The present version is an adaptation of Chapters
16 and 17 of Ferguson (1996). For further Glivenko - Cantelli theorems, see chapter 2.4 of Van der
Vaart and Wellner (1996).



30 CHAPTER 4. EFFICIENT LIKELIHOOD ESTIMATION AND RELATED TESTS

5 The EM algorithm

In statistical applications it is a fairly common occurrence that the observations involve “missing
data” or “incomplete data”, and this results in complicated likelihood functions for which there is
no explicit formula for the MLE. Our goal in this section is to introduce one quite general scheme for
maximizing likelihoods, the EM - algorithm, which is useful for dealing with missing or incomplete
data.

Suppose that we observe Y ∼ Qθ on (Y,B) for some θ ∈ Θ; we assume that Qθ has density qθ
with respect to a dominating measure ν. This is the “observed” or “incomplete data”.

On the other hand there is often an X ∼ Pθ on (X ,A) which has a simpler likelihood or for
which the MLE’s can be calculated explicitly, and satisfying Y = T (X). Here we will assume that
Pθ has density pθ with respect to µ, and we refer to X as the “unobserved” or “complete data”.
Since Y = T (X), it follows that

Qθ(B) = Qθ(Y ∈ B) = Pθ(T (X) ∈ B) = Pθ(X ∈ T−1(B)),

or Qθ = Pθ ◦ T−1. We want to compute

θ̂Y = argmaxθ log qθ(Y ),

but this is often difficult because qθ is complicated. We don’t get to observe X, but if we did, then
often computation of

θ̂X = argmaxθ log pθ(X)

is much easier.
How to proceed? Choose an initial estimator θ(0) of θ, and hence an initial estimator Pθ(0) of

Pθ. Then we would proceed via an

E-step: compute, for θ ∈ Θ,

φ0(θ) = φ0(θ, Y ) = EP
θ(0)

{log pθ(X)|T (X) = Y }.

This is the “estimated log-likelihood based on our current guess θ(0) of θ and our observations Y .
Then carry out an

M-step: maximize φ0(θ) = φ0(θ, Y ) as a function of θ to find

θ(1) = argmaxφ0(θ).

Now iterate the above two steps:
The following examples illustrate this general scheme.

Example 5.1 (Multinomial). Suppose that Y ∼Mult4(n = 197, p) where

p =
(

1
2

+
θ

4
,
1− θ

4
,
1− θ

4
,
θ

4

)
, 0 < θ < 1 .
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Therefore

qθ(y) =
n!

y1!y2!y3!y4!

(
1
2

+
θ

4

)y1
(

1− θ
4

)y2
(

1− θ
4

)y3
(
θ

4

)y4

,

l(θ|Y ) = Y1 log(1/2 + θ/4) + (Y2 + Y3) log(1− θ) + Y4 log θ + constant ,

l̇θ(Y ) = Y1
1/4

1/2 + θ/4
− (Y2 + Y3)

1
1− θ + Y4

1
θ

,

l̈(Y ) = −Y1
(1/4)2

(1/2 + θ/4)2
− (Y2 + Y3)

1
(1− θ)2 − Y4

1
θ2

,

and

I(θ) =
(1/4)2

1/2 + θ/4
+

1/2
(1− θ) +

1/4
θ

.

If θn is a preliminary estimator of θ, then a one-step estimator of θ is given by

θ̌n = θn + I(θn)−1 1
n
l̇(θn) .

Thus, if Y = (125, 18, 20, 34) is observed, and we take θn = 4Y4/n = (4 · 34)/197 = .6904, then the
one-step estimator is

θ̌n = .6904 +
1

2.07
1

197
(−27.03) = .6904 − .0663 = .6241 .

Note that solving the likelihood equation l̇θ(Y ) = 0 involves solving a cubic equation.
Another approach to maximizing l(θ|Y ) is via the E-M algorithm: suppose the “complete data”

is

X ∼Mult5(n, p) with p =
(

1
2
,
θ

4
,
1− θ

4
,
1− θ

4
,
θ

4

)
.(1)

so that

pθ(x) =
n!

∏5
i=1 xi!

(
1
2

)x1
(
θ

4

)x2+x5
(

1− θ
4

)x3+x4

,(2)

and the “incomplete data” Y is given in terms of the “complete data” X by

Y = (X1 + X2,X3,X4,X5) .(3)

Then the “E - step” of the algorithm is to estimate X given Y (and θ):

E(X |Y ) =
(

Y1
1/2

1/2 + θ/4
, Y1

θ/4
1/2 + θ/4

, Y2, Y3, Y4

)
,(4)

so we set

X̂
(p) ≡

(
Y1

1/2
1/2 + θ(p)/4

, Y1
θ(p)/4

1/2 + θ(p)/4
, Y2, Y3, Y4

)
(5)

where θ(p) is the estimator of θ at the p−th step of the algorithm.
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The “M - step” of the algorithm is to maxmimize the complete data likelihood with X replaced
by our estimate of E(X |Y ): it is easily seen that

l̇θ(X) =
X2 + X5

θ
− X3 + X4

1− θ
= 0

yields

θ̂n =
X2 + X5

X2 + X5 + X3 + X4

as an estimator of θ based on the full data. Since we can only observe Y , we take

θ̂(p+1) =
X̂(p)

2 + X5

X̂(p)
2 + X5 + X3 + X4

,(6)

and alternative between (5) and (6) with a “reasonable” guess θ̂0n of θ; say θ̂(0) = 1/2. This yields
the following table:

Table 4.1: Iterates of E and M steps in the Multinomial example

p θ̂(p) θ̂(p) − θ̂n
bθ(p+1)−bθn

bθ(p)−bθn

0 .500000000 - .126821498 .1465
1 .608247423 - .018574075 .1346
2 .624321051 - .002500447 .1330
3 .626488879 - .000332619 .1328
4 .626777323 - .000044176 .1328
5 .626815632 - .000005866 .1328
6 .626820719 - .000000779
7 .626821395 - .000000104
8 .626821484 - .000000014

The exact root of the likelihood equation which maximizes the likelihood is θ̂n = .62682149....

Example 5.2 (Exponential mixture model). Suppose that Y ∼ Qθ on R+ where Qθ has density

qθ(y) = {pλe−λy + (1− p)µe−µy}1(0,∞)(y) ,

and θ = (p,λ, µ) ∈ (0, 1) × R+2. Consider estimation of θ based on Y1, . . . , Yn i.i.d. qθ(y). The
scores for θ based on Y are

l̇p(Y ) =
λe−λY − µe−µY

qθ(Y )
,

l̇λ(Y ) =
pe−λY (1− λY )

qθ(Y )
, and

l̇µ(Y ) =
(1− p)e−µY (1− µY )

qθ(Y )
.
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It is easily seen that Eθ l̇2p(Y ) <∞, Eθ l̇2λ(Y ) <∞, and Eθ l̇2µ(Y ) <∞, and, moreover, that that the
information matrix is nonsingular if λ %= µ. However, the likelihood equations are complicated and
do not have “closed form” solutions.

Thus we will take an approach based on the EM algorithm. The natural “complete data” for
this problem is X = (Y,∆) ∼ pθ(x) where

pθ(x) = pθ(y, δ) = (pλe−λy)δ((1− p)µe−µy)1−δ , y > 0, δ ∈ {0, 1} .

Thus the “incomplete data” Y is just the first coordinate of X. Furthermore, maximum likelihood
estimation of θ in the complete data problem is easy, as can be seen by the following calculations.
The log of the density pθ(x) is

l(θ|X) = δ log p + (1− δ) log(1− p) + δ(log λ− λY ) + (1− δ)(log µ− µY )

so that

l̇p(X) =
∆
p
− 1−∆

1− p
, p̂ =

1
n

n∑

i=1

∆i ,

l̇λ(X) = ∆
(

1
λ
− Y

)
,

1
λ̂

=
∑n

i=1 ∆iYi∑n
i=1 ∆i

,

l̇µ(X) = (1−∆)
(

1
µ
− Y

)
,

1
µ̂

=
∑n

i=1(1−∆i)Yi∑n
i=1(1−∆i)

.

This gives the “M-step” of the E-M algorithm. To find the E-step, we compute

E(∆|Y ) =
pλe−λY

pλe−λY + (1 − p)µe−µY
≡ ∆̂(Y ) ≡ p(Y ; θ)

since (∆|Y ) ∼Bernoulli(p(Y ; θ)). Thus the E-M algorithm becomes: θ̂(m+1) = (p̂(m+1), λ̂(m+1), µ̂(m+1))
where

p̂(m+1) =
1
n

n∑

i=1

∆̂(m)
i , ∆̂(Yi, θ̂

(m)) ,

1
λ̂(m+1)

=
∑n

i=1 Yi∆̂
(m)
i∑n

i=1 ∆̂
(m)
i

,

1
µ̂(m+1)

=
∑n

i=1 Yi(1− ∆̂(m)
i )

∑n
i=1(1− ∆̂(m)

i )
.
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6 Nonparametric Maximum Likelihood Estimation

The maximum likelihood method has also been used successfully in a variety of nonparametric
problems. As in section 5 we will begin with several examples.

Example 6.1 Let X1, . . . ,Xn be i.i.d. X− valued random variables with common probability
distribution (measure) P on (X,A). For an arbitrary probability distribution (measure) Q on
(X,A), let Q({Xi}) ≡ qi. If there are no ties in the Xi’s, then

L(Q|X) =
n∏

i=1

qi ≡ L(q|X) .(1)

Consider maximizing this likelihood as a function of q. By Jensen’s inequality and concavity of
log x,

1
n

n∑

i=1

log qi ≤ log(q) ,

or
{

n∏

i=1

qi

}1/n

≤ q

with equality if and only if q1 = · · · = qn = q. Since
∑

qi ≤ 1, q ≤ 1/n. Thus

L(q|X) =
n∏

i=1

qi ≤ qn ≤
(

1
n

)n

with equality if and only if
∑

qi = 1 and q1 = · · · = qn = 1/n. Thus the MLE of P is Pn with
Pn({Xi}) = 1/n, or

Pn(A) =
1
n

#{i ≤ n : Xi ∈ A} =
1
n

n∑

i=1

δXi(A) .

This extends easily to the case of ties (homework!). Thus we have proved:

Theorem 6.1 The nonparametric maximum likelihood estimator of a completely arbitrary distri-
bution P on any measurable space based on i.i.d. data is the empirical measure Pn = n−1

∑n
1 δXi .

In particular, if X = R, the empirical distribution function Fn(x) ≡ n−1
∑n

1 1[Xi≤x] is the MLE
of F . Recall from Chapter 2 that Donsker’s theorem yields

√
n(Fn − F ) d= Un(F )⇒ U(F )

where Un is the empirical process of i.i.d. U [0, 1] random variables and U is a Brownian bridge
process.

Example 6.2 (Censored data). Suppose that X1, . . . ,Xn are i.i.d. F and Y1, . . . , Yn are i.i.d. G.
Think of the X’s as survival times and the Y ’s as censoring times. Suppose that we can observe
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only the i.i.d. pairs (Z1,∆1), . . . , (Zn,∆n) where Zi ≡ Xi ∧ Yi and ∆i ≡ 1{Xi ≤ Yi}. Thus the
joint distribution of (Z,∆) is given by

Huc(z) ≡ P (Z ≤ z,∆ = 1) =
∫

[0,z]
(1−G(x−))dF (x)

where G(x−) ≡ limy↑x G(y), and

Hc(z) ≡ P (Z ≤ z,∆ = 0) =
∫

[0,z]
(1− F (y))dG(y) .

Furthermore, the survival function 1−H(z) = P (Z > z) is given by

1−H(z) = P (Z > z) = P (X > z, Y > z) = (1− F (z))(1 −G(z)) .

Now suppose for simplicity that Zn:1 ≤ · · · ≤ Zn:n are all distinct. Let ∆n:1, . . . ,∆n:n be the
corresponding ∆’s. If we let pi ≡ F{Zn:i} = F (Zn:i) − F (Zn:i−) = ∆F (Zn:i), and qi ≡ G{Zn:i} =
G(Zn:i) − G(Zn:i−) = ∆G(Zn:i), i = 1, . . . , n, pn+1 = 1 − F (Zn:n) = 1 −

∑n
j=1 pj, and qn+1 =

1−G(Zn:n) = 1−
∑n

j=1 qj, then a nonparametric likelihood for the censored data problem is

n∏

i=1

p∆n:i
i




n+1∑

j=i

qj




∆n:i

q1−∆n:i
i




n+1∑

j=i+1

pj




1−∆n:i

=
n∏

i=1

p∆n:i
i




n+1∑

j=i+1

pj




1−∆n:i

×B(2)

where B depends only on the qi’s, and hence only on G. Thus we can find the nonparametric
maximum likelihood estimator of F by maximizing the first term over the pi’s. This is easy once
the log-likelihood is re-written in terms of λi ≡ pi/

∑n+1
j=i pj , i = 1, . . . , n + 1.

We will first take a different approach by using example 6.1 as follows: if F has density f , then
the hazard function λ is given by λ(t) = f(t)/(1− F (t)), and the cumulative hazard function Λ is

Λ(t) =
∫ t

0
λ(s)ds =

∫ t

0

f(s)
1− F (s)

ds =
∫ t

0

1
1− F (s)

dF (s) .

For an arbitrary distribution function F , it turns out that the “right” way to define Λ, the cumu-
lative hazard function corresponding to F , is:

Λ(t) =
∫

[0,t]

1
1− F (s−)

dF (s) .(3)

Note that we can write Λ as

Λ(t) =
∫

[0,t]

(1−G(s−)
(1−G(s−))(1 − F (s−))

dF (s) =
∫

[0,t]

1
1−H(s−)

dHuc(s) .

Moreover, we can estimate both Huc and H by their natural nonparametric estimators (from
Example 6.1):

Huc
n (z) =

1
n

n∑

i=1

1[Zi≤z,∆i=1], Hn(z) =
1
n

n∑

i=1

1[Zi≤z] .

Thus a natural “nonparametric maximum likelihood” estimator of Λ is Λ̂n given by

Λ̂n(t) =
∫ t

0

1
1−Hn(s−)

dHuc
n (s) .(4)
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It remains only to invert the relationship (3) to obtain an estimator of F . To do this we need
one more piece of notation: for any nondecreasing, right-continuous function A, we define the
continuous part Ac of A by

Ac(t) ≡ A(t)−
∑

s≤t

∆A(s), ∆A(s) ≡ A(s)−A(s−) .

Proposition 6.1 Suppose that Λ is the cumulative hazard function corresponding to an arbitrary
distribution function F as defined by (3). Then

1− F (t) = exp(−Λc(t))
∏

s≤t

(1−∆Λ(s)) ≡
∏

s≤t

(1− dΛ(s)) .(5)

Proof. In the case of a continuous distribution function F , Λ is also continuous, Λ = Λc,
∆Λ = 0 identically, and we calculate Λ(t) = − log(1− F (t)) so that (5) holds.

In the case of a purely discrete distribution function F the cumulative hazard function Λ is also
discrete so that Λc ≡ 0 and

1−∆Λ(s) = 1− ∆F (s)
1− F (s−)

=
1− F (s)

1− F (s−)
.

Thus
∏

s≤t

(1−∆Λ(s)) =
1− F (s1)

1− F (s1−)
× 1− F (s2)

1− F (s2−)
× · · ·× 1− F (sk)

1− F (sk−)

=
1− F (s1)

1
× 1− F (s2)

1− F (s1)
× · · ·× 1− F (t)

1− F (sk−1)
= 1− F (t)

where s1, . . . , sk are the points of jump of F which are less than or equal to t. Hence (5) also holds
in this case. For a complete proof of the general case, which relies on rewriting (3) as

F (t) =
∫ t

0
(1− F (s−))dΛ(s)(a)

or equivalently

1− F (t) = 1−
∫ t

0
(1− F (s−))dΛ(s) ,(b)

see e.g. Liptser and Shiryayev (1978), lemma 18.8, page 255. For a still more general (Doleans-
Dade) formula which is valid for martingales, see Shorack and Wellner (1986), page 897. !

Now we return to the likelihood in (2) with the goal of maximizing it directly. We first use the
discrete form of the identities above linking F and Λ to re-write (2) in terms of λi ≡ pi/

∑n+1
j=i pj :

note that

n∏

i=1

p∆n:i
i




n+1∑

j=i+1

pj




1−∆n:i

=
n∏

i=1

(
pi∑n+1

j=i pj

)∆n:i
( ∑n+1

j=i pj
∑n+1

j=i+1 pj

)∆n:i n+1∑

j=i+1

pj



6. NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION 37

=
n∏

i=1

λ∆n:i
i (1− λi)−∆n:i




n+1∑

j=i+1

pj





since 1− λi = 1− pi∑n+1
j=i pj

=
∑n+1

j=i+1 pj
∑n+1

j=i pj

=
n∏

i=1

λ∆n:i
i (1− λi)−∆n:i ·

n∏

i=1

i∏

j=1

(1− λj)

since
i∏

j=1

(1− λj) =
n+1∑

j=i+1

pj

=
n∏

i=1

λ∆n:i
i (1− λi)−∆n:i

n∏

j=1

(1− λj)n−j+1

=
n∏

i=1

λ∆n:i
i (1− λi)n−∆n:i−i+1.

Since each term of this likelihood has the same form as a Binomial likelihood, it is clear that it is
maximized by

λ̂i =
∆n:i

n− i + 1
, i = 1, . . . , n.

Note that this agrees exactly with our estimator Λ̂n derived above (in the case of no ties): ∆Λ̂n(Zn:i) =
∆n:i/(n − i + 1).

The right side of (5) is called the product integral; see Gill and Johansen (1990) for a survey.
It follows from proposition 6.1 that the nonparametric maximum likelihood estimator of F in the
case of censored data is the product limit estimator F̂n given by

1− F̂n(t) =
∏

s≤t

(1−∆Λ̂n(s))(6)

=
∏

i:Zn:i≤t

(
1− ∆n:i

n− i + 1

)
if there are no ties .

This estimator was found by Kaplan and Meier (1958). Breslow and Crowley (1974) proved, using
empirical process theory, that

√
n(Λ̂n − Λ)⇒ B(C) in D[0, τ ], τ < τH ;(7)

and hence that
√

n(F̂n − F )⇒ (1− F )B(C) d=
1− F

1−K
U(K) in D[0, τ ](8)

for τ < τH where B denotes standard Brownian motion, U denotes standard Brownian bridge, and

C(t) ≡
∫ t

0

1
(1−H−)2

dHuc, K(t) ≡ C(t)
1 + C(t)

.

Note that when there is no censoring and F is continuous K = F and the limit process in (8)
becomes just U(F ), the limit process of the usual empirical process. Martingale methods for proving
the convergences (7) are due to Gill (1980), (1983); see Shorack and Wellner (1986), chapter 7.
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Example 6.3 (Cox’s proportional hazards model and profile likelihood). Suppose that T is a
survival time and Z is a covariate vector with values in Rk. Further, suppose that (T |Z) has
conditional hazard function

λ(t|z) = eθ
T zλ(t) .

Here θ ∈ Rk and λ is an (unknown) baseline hazard function. Thus

Λ(t|z) = exp(θT z)Λ(t) ,

and, assuming that F is continuous, with F ≡ 1− F ,

1− F (t|z) = F (t|z) = F (t)exp(θT z) ,

or,

f(t|z) = exp(θT z)F (t)exp(θT z)λ(t) ,

If we assume that Z has density h, then

p(t, z; θ,λ, h) = p(t, z) = exp(θz)F (t)exp(θT z)λ(t)h(z) .

Hence

log p(T,Z; θ,λ, h) = θTZ − exp(θTZ)Λ(T ) + log λ(T ) + log h(Z) .

Suppose that (T1, Z1), . . . , (Tn, Zn) are i.i.d. with density p. Assume that 0 < T(1) < · · · < T(n)

are the ordered Ti’s, and Z(1), . . . , Z(n) are the corresponding Zi’s. Then, letting λi ≡ ∆Λ(T(i)) =
Λ(T(i))− Λ(T(i)−), Λ(T(i)) =

∑
j≤i λj , and hi ≡ H({Z(i)}), a natural nonparametric log-likelihood

is given by

l(θ,λ, h|X) =
n∑

i=1

{θT Z(i) − exp(θTZ(i))
∑

j≤i

λj + log λi + log hi}

=
n∑

i=1

θTZ(i) +
n∑

i=1




log λi − λi

∑

j≥i

exp(θTZ(j))




+
n∑

i=1

log hi

since
n∑

i=1

∑

j≤i

λje
θT Z(i) =

n∑

j=1

n∑

i=1

λj1{j ≤ i} exp(θTZ(i))

=
n∑

j=1

λj




∑

i≥j

exp(θTZ(i))



 .

Maximizing this with respect to λi and hi (subject to the constraint
∑n

i=1 hi = 1 and assuming
that all the Zj’s are distinct) yields

λ̂i =
1∑

j≥i exp(θT Z(j))
, ĥi = 1/n .
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Thus the profile log-likelihood for θ is given by

lprof (θ|X) = log

{
n∏

i=1

exp(θT Z(i))∑
j≥i exp(θT Z(j))

1
(ne)n

}

.(9)

The first factor here is (the log of) Cox’s partial likelihood for θ; Cox (1972) derived this by other
means. Maximizing it over θ yields Cox’s partial likelihood estimator of θ, which is in fact the
maximum (nonparametric or semiparametric) profile likelihood estimator. Let

θ̂n ≡ argmaxθ lprof (θ|X) .

it turns out that this estimator is (asymptotically) efficient; this was proved by Efron (1977) and
Begun, Hall, Huang, and Wellner (1983). Furthermore the natural cumulative hazard function
estimator is just

Λ̂n(t) =
∑

T(i)≤t

1
∑

j≥i exp(θ̂T Z(j))
=
∫ t

0

1
Yn(s, θ̂)

dHn(s)

where

Hn(t) ≡ n−1
n∑

i=1

1[Ti≤t], Yn(t, θ) ≡ n−1
n∑

i=1

1[Ti≥t] exp(θZi) .

This estimator was derived by Breslow (1972), (1974), and is now commonly called the Breslow
estimator of Λ. It is also asymptotically efficient; see Begun, Hall, Huang, and Wellner (1983) and
Bickel, Klaassen, Ritov, and Wellner (1993). Although our treatment here has not included right
censoring, this can easily be incorporated in this model, and this was one of the key contributions
of Cox (1972).

Example 6.4 (Estimation of a concave distribution function and monotone decreasing density).
Suppose that the model P is all probability distributions P on R+ = [0,∞) with corresponding
distribution functions F which are concave. It follows that the distribution function F correspond-
ing to P ∈ P has a density f and that f is nonincreasing. It was shown by Grenander (1956) that
if X1, . . . ,Xn are i.i.d. P ∈ P with distribution function F , then the MLE of F over P is the least
concave majorant F̂n of Fn; and thus the MLE f̂n of f is given by the slope of F̂n. See Barlow,
Bartholomew, Bremner, and Brunk (1972) for this and related results. It was shown by Kiefer and
Wolfowitz (1976) that

√
n(F̂n − F )⇒ U(F ) ,

and this phenomena of no improvement or reduction in asymptotic variance even though the model
P is a proper subset of M ≡ {all P on R+} is explained by Millar (1979). Prakasa Rao (1969)
showed that if f(t) > 0, then

n1/3(f̂n(t)− f(t))→d |f(t)f ′(t)/2|1/2(2Z)

where Z is the location of the maximum of the process {B(t) − t2 : t ∈ R} where B is standard
Brownian motion starting from 0; his proof has been greatly simplified and the limit distribution
examined in detail by Groeneboom (1984), (1989). These results have been extended to estimation
of a monotone density with right-censored data by Huang and Zhang (1994) and Huang and Wellner
(1995).
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Example 6.5 (Interval censored or “current status” data). Suppose, as in example 6.2, that
X1, . . . ,Xn are i.i.d. F and Y1, . . . , Yn are i.i.d. G, but now suppose that we only observe (Yi,∆i)
where ∆i = 1[Xi≤Yi]. Again the goal is to estimate F , even though we never observe an X directly,
but only the indicators ∆. If G has density g, then the density p(y, δ) of the i.i.d. pairs (Y, δ) is

p(y, δ) = F (y)δ(1− F (y))1−δg(y) .

if we suppose that there are no ties in the Y ’s, let Yn:1 < Yn:2 < · · · < Yn:n, and write Pi ≡ F (Yn:i),
qi ≡ G({Yn:i}), then a nonparametric likelihood for the data is given by

L(P , q|Y ,∆) =
n∏

i=1

P∆n:i
i (1− Pi)1−∆n:iqi ,

or

l(P , q) = log L =
n∑

i=1

{∆n:i log(Pi) + (1−∆n:i) log(1− Pi) + qi} ,

and we want to maximize this subject to the order restrictions 0 ≤ P1 ≤ . . . ≤ Pn ≤ 1. This was
solved by Ayer, Brunk, Ewing, Reid, and Silverman (1955) and also by van Eeden (1956), (1957).
The following description of the solution is from Groeneboom and Wellner (1992).

(i) Plot the points {(0, 0), (i,
∑

j≤i ∆n:j), i = 1, . . . , n}. This is called the cumulative sum
diagram.

(ii) Form H∗(t), the greatest convex minorant of the cumulative sum diagram in (i).

(iii) Let P̂i ≡ the left derivative of H∗ at i, i = 1, . . . , n.

Then P̂ = (P̂1, . . . , P̂n) is the unique vector maximizing l(P , q).
We define F̂n to be the piecewise constant function which equals P̂i on the interval (Yn:i, Yn:i+1].

Groeneboom and Wellner (1992) show that if f(t), g(t) > 0, then

n1/3(F̂n(t)− F (t)) →d

(
F (t)(1 − F (t))f(t)

2g(t)

)1/3

(2Z)

where Z is the location of the maximum of the process {B(t)− t2 : t ∈ R} as in example 6.4.

For further discussion of the definition of nonparametric maximum likelihood estimators see
Kiefer and Wolfowitz (1956) and Scholz (1980). For applications to a mixture model, see Jewell
(1982). Other applications of nonparametric maximum likelihod include the work of Vardi (1985)
and Gill, Vardi, and Wellner (1988) on biased sampling models. Nonparametric maximum likelihood
estimators may be inconsistent; see e.g. Boyles, Marshall, and Proschan (1985), and Barlow,
Bartholomew, Bremner, and Brunk (1972), pages 257 - 258. Some progress on the general theory
of nonparametric maximum likelihood estimators has been made by Gill (1989), Gill and van der
Vaart (1993), and van der Vaart (1995).
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7 Limit theory for the statistical agnostic

In the preceding sections we studied the limit behavior of the MLE θ̂n (or ELE θ̃n) under the
assumption that the model P is true; i.e. assuming that the data X1, . . . ,Xn were governed by a
probability distribution Pθ ∈ P. Frequently however we are in the position of not being at all sure
that the true P is an element of the model P, and it is natural to ask about the asymptotic behavior
of θ̂n (or θ̃n when, in fact, P /∈ P. This point of view is implicit in the robustness literature, and
especially in the work of Huber (1964), (1967), and White (1982).

We begin here with a heuristic and rather informal treatment which will then be made rigorous
using additional (convexity) hypotheses. For related results, see Pollard (1985), Pakes and Pollard
(1989), and Bickel, Klaassen, Ritov and Wellner (1993) appendix A.10 and sections 7.2 - 7.4.

Heuristics for Maximum Likelihood
Suppose (temporarily) that X,X1, . . . ,Xn are i.i.d. P on (X,A), and that

ρ(x; θ) ≡ log p(x; θ), x ∈ X, θ ∈ Θ ⊂ Rd

is twice continuously differentiable in θ for P− a.e. x. We do not assume that P ∈ P = {Pθ :
dPθ/dµ = pθ, θ ∈ Θ}. Let

ψ(x; θ) ≡ ∇θρ(x; θ) ,

and suppose that Eρ(X1; θ) <∞ and E|ψ(X1, θ)|2 <∞ for all θ ∈ Θ.
Suppose that P has density p with respect to a measure µ which also dominates all Pθ, θ ∈ Θ.

Then the maximum likelihood estimator maximizes

1
n

n∑

i=1

ρ(Xi; θ) →a.s. EPρ(X1; θ) = EP log p(X1; θ)

= EP log p(X1)−EP log
p(X1)

p(X1; θ)
= EP log p(X1)−K(P,Pθ) .

Since K(P,Pθ) ≥ 0, the last quantity is maximized by choosing θ to make K(P,Pθ) as small as
possible:

sup
θ
{EP log p(X1)−K(P,Pθ)} = EP log p(X1)− inf

θ
K(P,Pθ)

= EP log p(X1)−K(P,Pθ0)

if we suppose that the infimum is achieved at θ0 ≡ θ0(P ). Thus it is natural to expect that (under
reasonable additional conditions)

θ̂n = argmax{ 1
n

n∑

i=1

ρ(Xi; θ)}

→p argmax{EP log p(X1)−K(P,Pθ0)} = θ0(P ) = argminθ∈ΘK(P,Pθ) .

What about a central limt theorem? First note that since

θ0(P ) maximizes EP ρ(X1; θ) = Pρ(X1; θ)
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and

θ̂n maximizes
1
n

n∑

i=1

ρ(Xi; θ) = Pnρ(x; θ) ,

we expect that

0 = ∇θEP ρ(X1, θ)|θ=θ0 = EPψ(X1; θ0)

and

0 = ∇θPnρ(X, θ)|θ=bθn
= Pnψ(X; θ̂n) .

Therefore, by Taylor expansion of Pnψ(X; θ) about θ0, it follows that

0 = Ψn(θ̂n) ≡ Pnψ(X; θ̂n)
= Ψn(θ0) + Ψ̇n(θ∗n)(θ̂n − θ0)

where
√

nΨn(θ0) =
√

nPnψ(· ; θ0)(1)

=
1√
n

n∑

i=1

ψ(Xi; θ0)→d Z ∼ Nd(0,K)(2)

with

K ≡ EPψ(X1; θ0)ψT (X1; θ0) .

We also have

Ψ̇n(θ0) = Pnψ̇(X; θ0)→a.s. EP ψ̇(X; θ0) ,

and hence we also expect to be able to show that

Ψ̇(θ∗n)→p EP ψ̇(X1; θ0) ≡ J d× d .

Therefore if J is nonsingular we conclude from (1) that
√

n(θ̂n − θ0)→d −J−1Z ∼ Nd(0, J−1K(J−1)′) .

Note that if, in fact P ∈ P, then K = −J = Iθ, and the asymptotic variance - covariance matrix
J−1K(J−1)′ reduces to just the classical and familiar inverse information matrix.


