#### 36-755: Advanced Statistics

Fall 2017

# Lecture 13: Wednesday, October 11

Lecturer: Alessandro Rinaldo Scribe: Benjamin LeRoy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

**Disclaimer**: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

# 13.1 Visualizing Shrinkage

Recall that for Ridge regression:

$$\hat{\beta}_{ridge} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} ||Y - X\beta||^2 + \lambda ||\beta||^2, \quad \lambda \ge 0$$
$$= (X^T X + \lambda I_d)^{-1} X^T Y$$

To motivate approaching ridge regression in terms of spectral decomposion observe the following about Ordinary Least Squares when  $r = rank(X) \le \min\{n, d\}$ .

We can decompose  $X = U\Lambda V^T$  where  $\Lambda$  diagonal, with r non-zero values  $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r$ . We'll express  $U = [u_1, ..., u_d]$ . Then:

$$X\hat{\beta}_{ols} = X(X^T X)^+ X^T$$
$$= \sum_{i=1}^R u_i u_i^T Y$$

Back to ridge regression we have:

$$X\hat{\beta}_{ridge} = X(X^TX + \lambda \mathbb{I}_d)X^TY$$

Plugg in in SVD of X and noticing that

$$X^T X + \lambda \mathbb{I}_d = V \Lambda^2 V^T + \lambda \mathbb{I}_d = V (\Lambda^2 + \mathbb{I}_d) V^T$$

we have that

$$\begin{split} X \hat{\beta}_{ridge} &= U \Lambda V^T V (\Lambda^2 + \lambda \, \mathbb{I})^{-1} V^T V \Lambda U^T Y \\ &= U \Lambda (\Lambda^2 + \lambda \, \mathbb{I})^{-1} \Lambda U^T Y \\ &= U H U^T Y \end{split} \qquad \text{def of V (orthonormal structure gets } V^T V = \mathbb{I}_d) \end{split}$$

$$\text{where } H = \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & & & & 0 \\ & \ddots & & & & \\ & & \frac{\sigma_r^2}{\sigma_r^2 + \lambda} & & & \\ & & & 0 & & \\ & & & \ddots & \\ 0 & & & & 0 \end{bmatrix}.$$

Which means we can express

$$X\hat{\beta}_{ridge} = \sum_{i=1}^{r} u_i \frac{\sigma_i^2}{\sigma_i^2 + \lambda} u_i^T Y$$

This can be thought of as a weighted projection onto the PC directions of X with a shrinkage by  $\lambda$ , especially comparing to  $X\hat{\beta}_{ols} = \sum_{i=1}^{r} u_i u_i^T Y$ .

To really think about the shrinkage seen in ridge regression (and Lasso and best subset selection) we focus on the basic case where  $Y \sim (\mu, \sigma^2 \mathbb{I}) \in \mathbb{R}^d$  with the goal of estimating  $\mu$ . Under these assumptions we observe:

| $\hat{\mu}$                           | argmin representation                                                                       | reduction                              | comment                                                                                                                                                                                                                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\hat{\mu}_{mle} \ \hat{\mu}_{ridge}$ | $ = Y $ $= \operatorname{argmin}_{\mu \in \mathbb{R}^d}   Y - \mu  ^2 + \lambda   \mu  ^2 $ | $=\frac{Y}{1+\lambda}$                 | shrinks $\rightarrow 0$                                                                                                                                                                                                                                                                           |
| $\hat{\mu}_{lasso}$                   | $= \operatorname{argmin}_{\mu \in \mathbb{R}^d}   Y - \mu  ^2 + \lambda   \mu  _1$          | $= \operatorname{soft}_{\lambda/2}(Y)$ | where $\operatorname{soft}_{\lambda/2}(Y) = \begin{cases} x - \lambda/2 & x > \lambda/2 \\ 0 &  x  \leq \lambda/2 \\ x + \lambda/2 & x < -\lambda/2 \end{cases}$ where $\operatorname{hard}_{\sqrt{\lambda}}(Y) = \begin{cases} x &  x  > \sqrt{\lambda} \\ 0 &  x  < \sqrt{\lambda} \end{cases}$ |
| $\hat{\mu}_{	ext{best subset}}$       | $ = \operatorname{argmin}_{\mu \in \mathbb{R}^d}   Y - \mu  ^2 + \lambda   \mu  _0 $        | $=\operatorname{soft}_{\lambda/2}(Y)$  | where $\operatorname{hard}_{\sqrt{\lambda}}(Y) = \begin{cases} x &  x  > \sqrt{\lambda} \\ 0 &  x  < \sqrt{\lambda} \end{cases}$                                                                                                                                                                  |

Figure 13.1 provides a visual of each of these shrinkage functions compared to the OLS function (y = x).

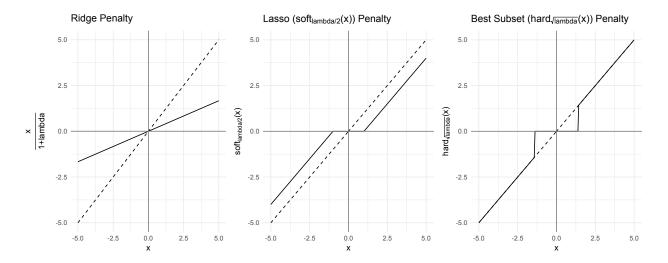


Figure 13.1: Different shrinkage lines for the basic case

When X is orthogonal in the standard regression case and  $\mu = X\beta$  then we have:

$$\hat{\mu}_{ridge} = \frac{X^T Y}{1+\lambda} = \frac{\hat{\beta}_{ols}}{1+\lambda} \qquad \hat{\mu}_{lasso} = \operatorname{soft}_{\lambda/2}(\hat{\beta}_{ols}) \qquad \hat{\mu}_{best \text{ subset}} = \operatorname{hard}_{\sqrt{\lambda}}(\hat{\beta}_{ols})$$

## 13.2 Fast Rates for Lasso

### 13.2.1 Reminders

In the last lecture we saw that Lasso could give us slow rates (compared to the best subset selection) if  $\lambda_n \geq \frac{||X^T \epsilon||_{\infty}}{n}$ . Specifically that if the constraint on  $\lambda_n$  held then for c > 0:

$$\frac{1}{2n}||X(\hat{\beta}_{lass}-\beta^*||^2 \leq 4||\beta^*||_1\lambda \qquad \text{ with prob } \geq 1-\frac{1}{n^c}$$

Where, with assumptions of sub-Gaussian noise and bounded covariates, we saw this had order  $o\left(\sigma\sqrt{\frac{\log n + \log d}{n}}\right)$ .

This was slower than with the best subset selection where, as a reminder:

$$\hat{\beta}_{\text{best subset}} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{2n} ||Y - X\beta||^2 + \lambda ||\beta||_0$$

and which yields preformance of order  $||\beta^*||_0 \frac{\sigma^2}{n} (\log d + \log n)$ .

Additionally, recall that if  $\lambda_{min}\left(\frac{X^TX}{n}\right) > c$  then  $\frac{1}{2}||\hat{\beta}_{lasso} - \beta^* * ||^2 \le \frac{4}{c}||\beta^*||_1\lambda_n$ .

### 13.2.2 Fast Rates for Lasso

In order to get fast rates for the Lasso, we need the restricted eigenvalue (RE) condition defined as below.

**Definition 13.1** X satisfies the  $RE(\alpha, \kappa)$  condition with  $\alpha > 1$ ,  $\kappa > 0$  for some  $S \subseteq \{1, ..., d\}$  if

$$\frac{1}{n}||X\Delta||^2 \ge \kappa ||\Delta||^2 \qquad \text{for all} \quad \Delta \in C_\alpha(S) = \{x \in \mathbb{R}^d : ||x_{S^C}||_1 \le \alpha ||x_S||_1\}$$

**Aside:** The constraint  $\frac{1}{n}||X\Delta||^2 \ge \kappa ||\Delta||^2$  can be though of as forcing  $||X\Delta||^2$  to have at least some amount of curvature on the S dimensions. One can think about this like bounding the derivative in those dimensions from below as  $\Delta$  is the difference between  $\hat{\beta}$  and  $\beta$ .

**Theorem 13.2** Assuming the following conditions:

- 1)  $Y = X\beta^* + \epsilon$   $\epsilon \in SG(\sigma^2)$  independent
- 2)  $supp(\beta^*) = \{i : \beta_i \neq 0\} = S$
- 3) X satisfies the  $RE(3,\kappa)$  conditional with respect to S

then if  $\lambda_n \geq \frac{2||X^T \epsilon||_{\infty}}{n}$  we have that

$$\frac{1}{n}||X\hat{\Delta}||^2 \le 9\lambda_n^2\frac{|S|}{\kappa} \quad and \quad ||\hat{\Delta}|| \le 3\sqrt{|S|}\frac{\lambda_n}{\kappa}$$

**Aside:** This is the same preformance as best subset selection noting that  $|S| = |\beta^*|_0$ .

**Proof:** Under these assumptions we first show that  $\hat{\Delta} \in C_3(S)$ : Recall the basic inequality (via  $\Delta$  inequality and expansion) we obtained in the last lecture:

$$0 \le \frac{1}{2n} ||X\hat{\Delta}||^2 \le \frac{\epsilon^T X \hat{\Delta}}{n} + \lambda_n \left( ||\beta^*||_1 - ||\hat{\beta}||_1 \right)$$
 (13.1)

Since  $\beta^*$  is S-sparse and recalling that  $\hat{\Delta} = \hat{\beta} - \beta^*$ , then

$$||\beta^*||_1 - ||\hat{\beta}||_1 = ||\beta_S^*||_1 - ||\beta_S^* + \hat{\Delta}_S||_1 + ||\hat{\Delta}_{S^C}||_1$$

From this we can observe that

$$\frac{1}{n}||X\hat{\Delta}||^2 \le \frac{2}{n}||X^T\epsilon||_{\infty}||\hat{\Delta}||_1 \qquad (\mathbf{i})$$

$$+ 2\lambda \left(||\hat{\Delta}_S||_1 - ||\hat{\Delta}_{S^C}||_1\right) \quad (\mathbf{ii})$$
(13.2)

Where (i) comes from Holder's inequality and (ii) comes a substitution into equation 13.1 from the triangle inequality giving

$$||\beta_S^*||_1 \le ||\hat{\Delta}_S||_1 + ||\beta_S^* + \hat{\Delta}_S||$$
  
$$\Leftrightarrow ||\hat{\Delta}_S||_1 \ge ||\beta_S^*||_1 - ||\beta_S^* + \hat{\Delta}_S||$$

Using the fact that  $\frac{2||X^T\epsilon||_{\infty}}{n} \leq \lambda_n$  from the theorem assumptions, we have that we can constrain  $\frac{1}{n}||X\hat{\Delta}||^2$  in equation 13.2 by

$$\leq \lambda ||\hat{\Delta}_{S}||_{1} + \lambda_{n}||\hat{\Delta}_{S^{C}}||_{1} + 2\lambda_{n}(||\hat{\Delta}_{S}||_{1} - ||\hat{\Delta}_{S^{C}}||_{1})$$
  
$$\leq \lambda_{n}(3||\hat{\Delta}_{S}||_{1} - ||\hat{\Delta}_{S^{C}}||_{1})$$

This implies that  $\hat{\Delta} \in C_3(S)$ , so we can use the fact that  $\frac{||X\hat{\Delta}||^2}{n} \ge ||\hat{\Delta}||^2 \kappa$ .

So, we can constraint  $\frac{1}{n}||X\hat{\Delta}||^2$  in the following way,

$$\begin{split} \frac{1}{n}||X\hat{\Delta}||^2 &\leq \lambda_n(3||\hat{\Delta}_S||_1 - ||\hat{\Delta}_{S^C}||_1) \\ &\leq 3\lambda_n(||\hat{\Delta}||_1) \\ &\leq 3\lambda_n\sqrt{|S|}||\hat{\Delta}_S||_2 \qquad \qquad \text{because } x \in \mathbb{R}^d \colon ||x||_2 \leq ||x||_1 \leq \sqrt{d}||x||_2 \\ &\leq 3\lambda_n\sqrt{|S|}||\hat{\Delta}||_2 \\ &\leq 3\lambda_n\sqrt{|S|}\frac{||X\hat{\Delta}||}{\sqrt{n}} \qquad \qquad \text{from the RE condition we showed first.} \end{split}$$

Observing that both sides of the equation has a multiple of  $\frac{||X\hat{\Delta}||}{\sqrt{n}}$  we can obtain:

$$\frac{1}{\sqrt{n}}||X\hat{\Delta}|| \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$$
$$\frac{1}{n}||X\hat{\Delta}||^2 \le 9\lambda_n^2 \frac{|S|}{\kappa}$$

which gives us the first part of the conclusion. Additionally, from the RE condition we have that  $\frac{||X\hat{\Delta}||^2}{n} \ge ||\hat{\Delta}||^2 \kappa$  which leads to

$$||\hat{\Delta}||\sqrt{\kappa} \le \frac{||X\hat{\Delta}||}{\sqrt{n}} \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$$

Which provides us with the fact that  $||\hat{\Delta}|| = ||\hat{\beta}_{lasso} - \beta^*|| \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$ .

In order to obtain the fast rate we need with high probability we have a  $\lambda_n$  such that  $\lambda_n \geq \frac{2||X^T\epsilon||_{\infty}}{n}$ . If the columns of X are normalized so that they have norm  $O(\sqrt{n})$  then you can take  $\lambda_n \asymp \sigma \sqrt{\frac{\log n + \log d}{n}}$  and the assumption will hold with probability  $\geq 1 - \frac{1}{n^c}$ .