10-755: Advanced Statistical Theory I

Fall 2017

Lecture 14: October 18

Lecturer: Alessandro Rinaldo Scribes: Ivan Stelmakh

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

14.1 Persistence

14.1.1 Setup

In general linear regression model we observe the sequence of random variables

$$Z_1,\ldots,Z_n \sim P$$

Here $Z_k = (X_k, Y_k) \in \mathbb{R}^{d+1}$ where $X_k \in \mathbb{R}^d, Y_k \in \mathbb{R}$. The goal is to predict Y based on X for $(X, Y) \sim P$. If we are interested in linear regression model, we want to compute β^* such that

$$\beta^* = \arg\min_{\beta \in \mathbb{R}^d} \left\{ \underbrace{\mathbb{E}\left[\left(Y - X^T \beta\right)^2\right]}_{R_P(\beta)} \right\}$$

Now suppose we are working in the following settings

- We have a sequence $\{\mathcal{P}_n\}$ of probability distributions for Z=(X,Y) indexed by n where $Z\in\mathbb{R}^{d_n+1}$. For each n we observe n samples Z_1,\ldots,Z_n from some probability distribution $P\in\mathcal{P}_n$
- We have a sequence of sets $\{K_n\}$ where $K_n \subset \mathbb{R}^{d_n}$
- \bullet For each n we are interested in constrained least squares estimators

$$\beta_n^* = \arg\min_{\beta \in K_n} \left\{ \mathbb{E}\left[\left(Y - X^T \beta \right)^2 \right] \right\}$$

Note, that $\beta_n^* = \beta_n^*(P)$ where $P \in \mathcal{P}_n$ is distribution of observed Z

Example Here are two examples of K_n

- $K_n = \left\{ \beta \in \mathbb{R}^{d_n} \middle| ||\beta||_1 \le L_n \right\}$ Lasso-type condition
- $K_n = \left\{ \beta \in \mathbb{R}^{d_n} \left| ||\beta||_0 \le C_n \right\} \right\}$ Best subset-type condition

14-2 Lecture 14: October 18

Definition 14.1 Given a pair of sequences $[\{\mathcal{P}_n\}, \{K_n\}]$, a sequence of estimators $\{\widehat{\beta}_n\}$ is persistent if

$$R_{P_n}(\widehat{\beta}_n) - R_{P_n}(\beta_n^*) \rightarrow^p 0$$

uniformly over $\{\mathcal{P}_n\}$. Here \rightarrow^p denotes convergence in probability.

Let $K_n = \left\{\beta \in \mathbb{R}^{d_n} \middle| ||\beta||_1 \le L_n \right\}$ - Lasso condition. This sequence of sets defines Lasso estimator

$$\widehat{\beta}_n = \arg\min_{\beta \in K_n} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i^T \beta)^2 \right\}$$

14.1.2 Persistence for Lasso

Theorem 14.2 Under some growth condition on d_n and L_n Lasso estimator provides persistent sequence $\{\widehat{\beta}_n\}$. In other words, Lasso estimator is persistent.

Proof:

For simplicity, we assume that Z is zero-mean random variable.

Let $\Sigma_n \in \mathbb{R}^{(d_n+1)\times(d_n+1)}$ - covariance matrix of Z. Let us also consider the estimator $\widehat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n Z_i Z_i^T$.

Now assume that $||\Sigma_n - \widehat{\Sigma}_n||_{\infty} = \max_{ij} |\Sigma_n^{(ij)} - \widehat{\Sigma}_n^{(ij)}| \le E_n(\delta_n)$ with probability at least $1 - \delta_n$. To maintain brevity, we do the following notational switch:

- $\beta \to \widetilde{\beta} = \begin{pmatrix} -\beta \\ 1 \end{pmatrix} \in \mathbb{R}^{d_n + 1} \text{ so } Y X^T \beta = Z^T \widetilde{\beta}$
- $L_n \to \widetilde{L}_n = L_n + 1$
- $K_n \to \widetilde{K}_n = \left\{ \begin{pmatrix} -\beta \\ 1 \end{pmatrix} \middle| \beta \in K_n \right\}$
- $R_P(\beta) \to R_P(\widetilde{\beta}) = \mathbb{E}\left[\left(Z^T\widetilde{\beta}\right)^2\right]$

To proof the theorem, we need the following lemms

Lemma 14.3 Uniformly over all $P \in \{\mathcal{P}_n\}$

$$R_P(\widehat{\widetilde{\beta}}) \le R_P(\widetilde{\beta}^*) + 2E_n(\delta_n)\widetilde{L}_n^2$$

with probability at least $1 - \delta_n$

Proof: Note that $R_P(\widetilde{\beta}) = \widetilde{\beta}^T \Sigma \widetilde{\beta}$ and $\widehat{R}_P(\widetilde{\beta}) = \widetilde{\beta}^T \widehat{\Sigma} \widetilde{\beta}$ where

$$\widehat{R}_P(\widetilde{\beta}) = \frac{1}{n} \sum_{i=1}^n \left(Z_i^T \widetilde{\beta} \right)^2$$

Lecture 14: October 18 14-3

If $\widetilde{\beta} \in \widetilde{K}_n$ then with probability at least $1 - \delta_n$

$$|R_p(\widetilde{\beta}) - \widehat{R}_P(\widetilde{\beta})| = |\widetilde{\beta}^T \left(\Sigma - \widehat{\Sigma} \right) \widetilde{\beta}| \le ||\Sigma - \widehat{\Sigma}||_{\infty} ||\widetilde{\beta}||_1 \le E_n(\delta_n) \widetilde{L}_n^2$$

Now we can derive that

$$R_P(\widehat{\widetilde{\beta}}) \leq^{(i)} \widehat{R}_P(\widehat{\widetilde{\beta}}) + E_n(\delta_n) \widetilde{L}_n^2 \leq^{(ii)} \widehat{R}_P(\widetilde{\beta}^*) + E_n(\delta_n) \widetilde{L}_n^2 \leq^{(iii)} R_P(\widehat{\widetilde{\beta}}) + 2E_n(\delta_n) \widetilde{L}_n^2$$

Here (i) and (iii) follows from the obtained bound on $|R_p(\widetilde{\beta}) - \widehat{R}(\widetilde{\beta})|$, (ii) follows from the fact that $\widehat{\widetilde{\beta}}$ minimizes $\widehat{R}(\widetilde{\beta})$ over all $\widetilde{\beta} \in \widetilde{K}_n$. This concludes the proof of the lemma.

The result of the lemma allows us to conclude that if $\delta_n \to 0$ and $E_n(\delta_n)\widetilde{L}_n^2 \to 0$ then the sequence of $\widehat{\beta}_n$ that corresponds to Lasso is persistent.

Comment: Under standard sub-gaussian conditions if $d_n \sim n^{\alpha}, \alpha \geq 0$

$$E_n(\delta_n) \sim \sqrt{\frac{\log d + \log n}{n}} \sim \sqrt{\frac{\log n}{n}}.$$

Then Lasso Estimator is persistent if

$$L_n = o\left[\left(\frac{n}{\log n}\right)^{1/4}\right]$$

14.1.3 Persistence for Best subset selection

If we consider the sequence of sets $K_n = \{\beta \in \mathbb{R}^d | ||\beta||_0 \le C_n\}$. If we assume that $\forall n : ||\beta_n^*||_0 \le C$ where C is some universal constant that does not depend on n, then the rate of persistence for best subset selection least squares is

$$C_n = o\left(\sqrt{\frac{n}{\log n}}\right)$$

14.1.4 Further reading

The following papers are recommended

- A Distribution-Free Theory of Nonparametric Regression [GKKW02]
- Assumptionless consistency of the Lasso [C13]

14-4 Lecture 14: October 18

14.2 Principal Component Analysis

14.2.1 Setup

 $X \in \mathbb{R}^d$ - random vector with covariance matrix Σ which has eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$. Each eigenvalue λ_i has associated eigenvector v_i such that $\Sigma v_i = \lambda_i v_i$. Given that, we can represent Σ as

$$\Sigma = \sum_{i=1}^{d} \lambda_i v_i v_i^T$$

The PCA is connected with direction of maximal variance of the distribution. The following figure represent samples from 2D Gaussian distribution with covariance matrix $\Sigma \neq I$. The variance is not uniform across all the directions and there is a direction along which the variance takes maximal value.

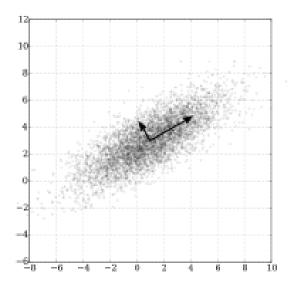


Figure 14.1: Samples from 2D Gaussia Distribution

Equivalently, v^* gives the direction of the maximal variance if

$$v^* \in \arg\max_{v \in S^{d-1}} \mathbb{V}\left[v^T X\right] = \arg\max_{v \in S^{d-1}} \left\{v^T \Sigma v\right\} = v_1$$

Here v_1 is the eigenvector associated with the largest eigenvalue λ_1

References

[GKKW02] L. GYORFI, M. KOHLER, A. KRZYZAK and H.WALK, "A Distribution-Free Theory of Non-parametric Regression", Springer Series in Statistics, 2002

[C13] S. CHATTERJEE, "Assumptionless consistency of the Lasso", arXiv:1303.5817, 2013