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Abstract

We analyze the performance of a practical spectral clustering algorithm for com-
munity extraction in the stochastic block model. The procedure performs k-means
clustering on the leading eigenvectors of the adjacency matrix of the observed
network. We provide sufficient conditions for consistent community recovery in
terms of the overall sparsity, the degree of separation among communities, and
the imbalance among the sizes the communities. We show that the algorithm can
recover the hidden communities with vanishing misclustering rate even when the
expected node degrees grow only logarithmically in the size of the network. We
demonstrate rates that are comparable or better than those reported in most exist-
ing work, which are often based on more computationally demanding algorithms.

1 Introduction

In recent years, modern technology has enabled many new forms of measurement and collection of
complex data. An important subcategory is network or relational data. In a network data set, the
recorded values are not attributes of individuals from the same population, but the interactions be-
tween pairs of individuals in the population. Examples include social networks (friendship between
Facebook users, blog following, twitter following, etc.), biological networks (gene network, gene-
protein network), information network (email network, World Wide Web), and many other fields.
A network data set can be represented by the network adjacency matrix A = (aij)1i,jn, a sym-
metric binary matrix with zero diagonal values with each entry indicating if there is a connection
between node i and node j. Here V = {1, 2, ..., n} is the set of all nodes in the sample. A review of
modeling and inference on network data can be found in recent books [14, 10].

An important inference task for network data is the identification of communities, where, loosely
speaking, a community is a subset of nodes in the network that have an higher average degree of
connectivity within themselves compared to the remaining nodes. There are different methods for
finding communities from a given adjacency matrix. In statistics and machine learning, a simple and
nice mixture model is proposed by [11], with the name “stochastic block model” (SBM). In a SBM,
the nodes are partitioned into K disjoint communities, where the chance of there being an edge
between node i and node j is determined only by the community membership of i and j. Moreover,
it is assumed that the edges are independently generated given the membership.

The SBM has been the focus of much research effort on network community detection because it
has a simple and intuitive mathematical structure that allows for rigorous analysis. Some extensions
of SBM, such as the degree corrected block model [13] and the mixed membership model [1] can
be used to approximate a wide range of real network data. Such a model based approach to network
community extraction also opens the possibility of statistical inferences such as goodness-of-fit test
and confidence intervals. In the statistics literature, the problem of consistent community estimation
under the stochastic block model and variants thereof is studied in [4, 20, 5]. In computer science
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and machine learning, the network community detection problem is closely related to the graph par-
titioning and planted partition model (a special case of SBM), where the spectral clustering method
is very popular [17, 19].

We study the community recovery problem in the stochastic block model using a simple form of
spectral clustering for network data. The applicability of spectral methods for community extrac-
tion was initially shown by [20], who demonstrated that spectral clustering using normalized graph
Laplacian gives consistent community detection for dense graphs where the node degrees are of or-
der n/ log n. Our result gives an affirmative answer to an open question raised by [20], showing that
spectral clustering methods can consistently detect the communities for very sparse block models.
We investigate the misclustering rate in terms of the overall sparsity, the separation of connectivity
between blocks, and the maximum and minimum block sizes. In particular, we show that a sim-
pler spectral clustering method can give consistent community detection even when the maximum
node degree is of order log n, which is a weaker requirement than most existing results. Such an
improvement may be due to a new argument used in this paper, together with the fact that we focus
on approximate community recovery (vanishing Hamming error rate), rather than the more stringent
exact recovery considered in many recent works [4, 7, 6]. The dependence on the community sep-
aration in our result is comparable to other state-of-art results such as [7, 6]. Our result explicitly
keeps track of all logarithm terms, because, as mentioned in [4], log n seems to be a critical rate of
the average degree in the sparse regime of stochastic block models.

The method and some of the analysis of this paper are inspired by [12], who studies community
extraction in the (dense) degree corrected stochastic block model ([13]). The method proposed there
simply performs a k-means clustering algorithm on the leading eigenvectors of the adjacency matrix,
without using any graph Laplacian. This procedure does not require any tuning parameters once the
number of communities, K, is known. Unlike some existing works (including [12, 6]) where the
matrix Bernstein’s inequality is the main technical tool, our analysis relies additionally on a new
variational characterization of the principal components recently developed by [23], together with a
sharp spectral bound of random matrices with block structured expectation ([9]). These arguments
give a better dependence on the sparsity and community separation when K is small and require a
much weaker eigengap condition than in [20] and [12].

Contribution of this paper The main contributions of this paper are the following.

1. We analyze perhaps the simplest form of spectral clustering for community detection in
stochastic block models with novel arguments under general conditions which allow the
model to be very sparse.

2. Our misclustering rate in Hamming distance explicitly takes into account the overall spar-
sity, the degree of separation among communities and community size imbalance.

3. We show that consistent community detection is achievable when the maximum degree is
of order log n, while the dependence on block separation is better than other state-of-art
results when the number of blocks is small.

Related work Consistency of spectral clustering under stochastic block models has so far been
mostly focusing on very dense graphs. The first work in this direction is [20], where the normal-
ized graph Laplacian is considered and the network is assumed to be dense. Extensions to (dense)
degree corrected block models is reported in [12] under Hamming distance error rate. [6] studies
community detection for extended planted partition (a special case of degree corrected stochastic
block model) using the random walk graph Laplacian.

Other approaches to community detection for stochastic block models include optimization over
block partitions such as modularity methods [18] and likelihood methods [4, 8]; matrix optimization
[7]; and tensor spectral methods [2]. The performance is commonly assessed by the minimum
average degree and the separation between intra- and inter-block connectivity required for consistent
community detection. The dependence on average degree is complicated due to the interaction of all
the factors in the model. The likelihood modularity method proposed in [4] can succeed when the
average degree grows faster than log n. The convex optimization method in [7] allows the average
degree to be as small as log4 n. In the graph partitioning literature, [9] obtained a very sharp result
for a spectral method (other than spectral clustering) that essentially requires the average degree to
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be larger than K4 where K is the number of blocks. The algorithm and analysis presented in this
paper are much simpler and more implementable than those in [9].

2 Stochastic block model and spectral clustering

In the stochastic block model [11], the adjacency matrix A = (aij)1i,jn consists of independent
upper diagonal entries aij ⇠ Bernoulli(pij) for 1  i < j  n, with aji = aij and aii = 0 for all i.
Additionally, the stochastic block model assumes that the edge probabilities (pij : 1  i < j  n)
come from the entries of a matrix P = (pij)1i,jn, which has a block structure: P =  B T ,
where B = (bk`)1k,`K is a K ⇥K symmetric matrix with bk` 2 [0, 1] for all 1  k, `  K, and
 is an n⇥K membership matrix, with each row having one entry being 1 and others being 0. It is
usually assumed that K is much smaller than n.

A stochastic block model is specified by the pair ( , B). It naturally partitions the set of nodes into
K communities through the membership matrix  . Formally, for each i 2 [n], let g(i) 2 [K] be
such that  i,g(i) = 1. Then g(i) indicates the community (or block) that node i belongs to. The
model further assumes that the probability of an edge between nodes i and j is bg(i)g(j). Therefore,
the model uses B to capture the average degree of connectivity among and within the communities,
and the interaction between two nodes is determined by their community membership and the cor-
responding entry in B. The community identification problem is to recover the membership matrix
 (up to column permutations) from a realization of A. If the communities are correctly recovered,
estimating B is straightforward and can be done at a parametric rate.

Additional notation In the rest of this paper, kvk
2

denotes the Euclidean norm of a vector v. For
any matrix X 2 Rn⇥m, kXkF ⌘ (

P
i,j X

2

ij)
1/2 denotes its Frobenius norm, kXk

1

⌘
P

i,j |Xij |
its entry-wise `

1

norm, and kXk the operator norm. For any G ✓ [n], XG· denotes the submatrix of
X with row indices in G. In particular, for any i 2 [n], Xi· denotes the ith row of X . We use Mn⇥K

to denote the set of all n⇥K membership matrices (each row has one “1” and K � 1 “0”). Finally,
an = o(bn) means that limn!1 |an/bn| = 0; an = O(bn) means lim supn!1 |an/bn| < 1;
an = !(bn) means bn = o(an); and an = ⌦(bn) means bn = O(an).

A spectral clustering algorithm We consider the simple algorithm proposed in [12], whose in-
tuition is straightforward. The adjacency matrix A can be viewed as a noisy version of the under-
lying matrix P with independent zero-mean additive noises. Let  k be the kth column of  , and
� = diag(k 

1

k
2

, ..., k Kk
2

). Then it is easy to verify that the columns of ˜ ⌘  ��1 are orthonor-
mal. Now let ˜B = �B� with eigen-decomposition ˜B = QDQT , where D = diag(d

1

, ..., dK)

satisfies |d
1

| � |d
2

| � ... � |dK | � 0, and Q 2 RK⇥K is an orthonormal matrix. Then we can
write

P =  B T
=

˜

 

˜B ˜

 

T
= (

˜

 Q)D(

˜

 Q)

T , (1)

which is the eigen-decomposition of P because D is diagonal and (

˜

 Q)(

˜

 Q)

T
=

˜

 

˜

 

T
= IK .

Note that ˜

 has only K distinct rows. As a result ˜

 Q also has only K distinct rows. Specifically,
these distinct rows are {Qk·/k kk2, k 2 [K]}.

Below (see Lemma 5 in Section 3) we show that the eigenvectors of A are close to those of P , then
one can recover the community membership by grouping the rows of the leading eigenvectors of A,
which is precisely spectral clustering. The details of the algorithm are given below.

Algorithm 1: Simple Spectral Clustering

Input: Adjacency matrix A, number of blocks K, (optional) approximation parameter ✏ for
k-means subroutine
Output: A membership matrix ˆ

 .

1. Let ˆU ˆD ˆUT be the leading K-dimensional eigen-decomposition of A.
2. Output the clustering given by any (1 + ✏)-approximate k-means algorithm on rows

of ˆU .
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Remark 1. To give a precise formulation of the k-means problem, consider the following optimiza-
tion problem,

min

 2Mn⇥K ,X2RK⇥K
k X � ˆUk2F . (2)

It is well-known that finding the exact solution to (2) is NP-hard. But efficient algorithms have
been developed to find constant factor approximations (see, e.g., [15]). We will investigate the
performance of spectral clustering for both exact and approximate solutions to (2).

Algorithm 1 is attractive because of its simplicity. Obviously, its performance depends on the ma-
trices B and �. [12] considered the case ✏ = 0 and showed that if bk` = ⌦(1) for all 1  k, `  K
then the misclustering rate of this algorithm goes to zero with high probability, provided that the
smallest cluster size is large enough and the eigengap of B is bounded away from zero. In the
following section, we give a better quantification of the misclustering rate in terms of maxk,` bk`,
mink k kk2, K, and the smallest eigenvalue of B, which makes the method consistent even when
bk` = ⌦(log n/n).

3 Analysis

First, we introduce some notation and define some important quantities. Recall that the maximum
expected degree in the network is bounded by nmax

1k,`K bk`. In order to capture the overall
sparsity of the block model, we consider the maximum blockwise connectivity

↵n = max

1k,`K
bk` ,

which is allowed to change with n. By definition of ↵n, the maximum entry of the scaled matrix
B

0

= B/↵n is 1. Another important factor that determines the hardness of the community detection
problem is the separation between different blocks. That is, the pairwise difference between the rows
of B. Intuitively, if Bk· and B`· are close, then it is hard to distinguish these two blocks. Here we
use �

min

(B
0

), the smallest absolute eigenvalue of B
0

, as an indirect measure the block separation.
To sum up, we use the following notation

B = ↵nB0

, max

k,`
B

0

(k, `) = 1, �
min

(B
0

) = �n. (3)

The quantities and scaling given in (3) separates out and emphasizes two fundamental aspects of the
community detection problem: the overall sparsity (↵n), and the scaled block connectivity separa-
tion (�n). When ↵n and �n are large, it is easier to recover the communities from noisy observations.

For 1  k  K, let nk be the number of nodes in the kth block, and define

n
min

= min

k
nk, n

max

= max

k
nk . (4)

In the rest of this paper, we will characterize the performance of the spectral clustering method
described above as a function of the parameters (↵n,�n,K, n

max

, n
min

), which we allow to change
with n.

3.1 Consistency of clustering

Recall that we seek to obtain a membership matrix ˆ

 2 Mn⇥K such that the total number of
misclustered nodes is small. To this end, we define two types of consistency.

Definition 2. We say ˆ

 is overall consistent if

Errn(
ˆ

 , ) ⌘ (2n)�1

min

J2PK

kˆ � Jk
1

! 0, as n ! 1 ,

where PK denotes the set of all K ⇥ K permutation matrices. Similarly, we say ˆ

 is blockwise
consistent if

lim

n!1
min

J2PK

max

1kK
(2nk)

�1kˆ Gk· � Gk·Jk1 = 0 .
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The notion of overall consistency is clearly weaker than that of blockwise consistency. Because both
ˆ

 and are membership matrices, the matrix `
1

norm used in the definition yields the (normalized)
Hamming distance between the true and estimated community assignments. In both definitions, an
error rate of 0 means perfect recovery, while an error rate of 1 means completely incorrect recovery.

Now we have our main results on the error bound of the spectral clustering algorithm. All the proofs
are given in the Supplementary Material.
Theorem 3 (Error bounds of spectral clustering). Given any positive constants (a, r, ✏), let A be a
realization of stochastic block model ( , B) such that

↵n � a
log n

n
,

K(K ^
p
log n)2n

↵n�2nn
2

min

< c�1

0

(a, r, ✏), (5)

where c
0

is a deterministic function of (a, r, ✏). Then with probability at least 1� 2n�r, the output
ˆ

 of Algorithm 1 satisfies, for some K ⇥K permutation matrix J ,

KX

k=1

kˆ Gk· � Gk·Jk1
nk

 2c
0

(a, r, ✏)K(K ^
p
log n)2n

↵n�2nn
2

min

,

and as a consequence

Errn(
ˆ

 , )  c
0

(a, r, ✏)K(K ^
p
log n)2n

max

↵n�2nn
2

min

.

If ↵n � a(log n)4/n, the above results hold when the term K ^
p
log n is replaced by 1.

The first condition in (5) is required to yield non-trivial bounds on kA�Pk (see Lemma 6), while the
second condition is needed to guarantee a low misclustering error for the k-means procedure (see
Lemma 7). In Section 3.2 we provide a detailed discussion and comparisons with the conditions
assumed by other competing methods.
Remark 4. The function c

0

in Theorem 3 is given in closed form in the Supplementary Material.

The proof of Theorem 3 follows and refines the ideas outlined in [20, 12]. It consists of three major
steps. The first step is to bound the distance from ˆU , the estimated eigenvectors, to a rotated version
of ˜

 , the true eigenvectors. This is essentially bounding the deviation in the principal subspace after
perturbing a matrix with entry-wise independent random noise. The traditional tool for such a bound
is the Davis-Kahan sin⇥ Theorem. Here we use a different result, first given in [22, 23], to obtain a
bound that is better suited to our task.
Lemma 5 (Accuracy of principal subspace). Let ˆU 2 Rn⇥K be the K leading eigenvectors of A.
There exists a K ⇥K orthogonal matrix Q such that

k ˆU � ˜

 QkF  2

p
2K

↵n�nnmin

kA� Pk.

The proof is adapted from Theorem 3.3 of [23], which uses a novel lower bound on curvature of the
PCA objective function at the principal subspace.

The second major step is to control the spectral norm of the noise matrix A�P . Common techniques
include the matrix Bernstein inequality [21], and combinatorial arguments [9, 16]. The following
lemma combines the results given by different methods under different conditions.
Lemma 6 (Spectral norm bound of noise matrix). For any a, r > 0, there exists a constant c(a, r)
depending only on a and r such that with probability at least 1� 2n�r we have,

kA� Pk 
(

c(a, r)(K ^
p
log n)

p
n↵n, if ↵n � a logn

n ,

c(a, r)
p
n↵n, if ↵n � a (logn)4

n .
(6)

The constant c(a, r) in Lemma 6 is closely related to the c
0

(a, r, ✏) in Theorem 3. Its closed form is
given in the proof of Lemma 6 in Supplementary Material.
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Combining Lemmas 5 and 6, we know that ˆU is close to ˜

 Q in Frobenius norm for some K ⇥K
orthonormal Q. The following lemma controls the error rate of the (approximate) k-means solution
in terms of k ˆU � ˜

 QkF . It is a refinement of the arguments used in Theorem 3.1 of [20] and
Theorem 2.2 of [12].
Lemma 7 (Hamming error of k-means solution). For ✏ > 0 and any two matrices ˆV , V with same
dimension such that V =  X with 2 Mn⇥K , X 2 RK⇥K , let ¯V =

ˆ

 

ˆX be a (1+✏)-approximate
solution to the k-means problem in eq. (2) with ˆU replaced by ˆV . Define �k = min` 6=k kX`· �Xk·k
and Sk = {i 2 Gk : k ¯Vi· � Vi·k � �k/2} then

KX

k=1

|Sk|�2k  4(4 + 2✏)k ˆV � V k2F . (7)

Moreover, if (16+8✏)k ˆV �V k2F /�2k < |Gk| for all k, then there exists a K⇥K permutation matrix
J such that ˆ S· =  S·J , where S = [K

k=1

(Gk\Sk).

Lemma 7 suggests that the (approximate) k-means solution gives correct clustering for all nodes in
the set S. Thus all mis-clustered nodes are contained in Sc. The cardinality of Sc can be bounded by
k ˆV � V k2F /�2k. In the proof of Theorem 3, Lemma 7 is applied to ˆU and ˜

 Q for some orthonormal
Q, and k ˆU � ˜

 Qk2F is bounded by Lemmas 5 and 6.

3.2 Application to Planted Partition Models

The planted partition model is a special case of the stochastic block model, where the within-block
edge probability is p 2 (0, 1] and between-block edge probability is q 2 (0, p). Equivalently, the
block connectivity matrix B can be written as (p�q)IK+q11T . In our scaling (3), this corresponds
to the following parametrization.

p = ↵n, q = ↵n(1� �n), B
0

= �nIK + (1� �n)11
T .

In this case �n is indeed the smallest absolute eigenvalue of B
0

. Then Theorem 3 implies that a
sufficient condition for the spectral clustering method to be overall consistent is

p = ⌦

✓
log n

n

◆
,

p� q
p
p

=

8
<

:
⌦

⇣p
K(K ^

p
log n)

p
n

n
min

⌘

!
⇣p

K(K ^
p
log n)

p
n
max

n
min

⌘ ,

where the first part corresponds to the overall sparsity condition and the second part corresponds to
the block separation (the normalized difference between within and between block connectivity).

The planted partition model offers a natural benchmark for the performance of community recovery
algorithms. The existing results (see , e.g., [7, 6]) typically exhibit a lower bound on (p � q)/

p
p

as the main sufficient condition for consistent community detection. However, the condition on the
overall sparsity p, although playing a very important role, is less commonly recognized.

To further interpret our result and compare it with the state-of-art methods, we consider two special
cases of the planted partition models. The comparison indicates that the conditions required by
our method are weaker when the number of blocks is small. We note that the comparison itself is
not sufficient to claim that one method is superior since different notions of consistency are used.
However, out algorithm has the advantage of being computationally less demanding.

3.2.1 The case of K = O(1).

This corresponds to a constant number of blocks. We have K^
p
log n  K = O(1). Our separation

condition becomes
p� q
p
p

= !

✓ p
n

n
min

◆
, (8)

and the comparing conditions are

p� q
p
p

= ⌦

✓p
n log

2 n

n
min

◆
(9)
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in [7], and
p� q
p
p

= ⌦

✓p
n log n

n
min

◆
(10)

in [6] (provided that q = ⌦(1)).

In the case of K = O(1), it is of interest to see how large n
min

needs to be for the methods
to achieve consistency. Eq. (8) can hold when n

min

= !(
p
n), while eqs. (9) and (10) require

n
min

= ⌦(

p
n log

2 n), and n
min

= ⌦(

p
n log n), respectively.

3.2.2 The case of K = !(1) and n
max

= n
min

= n/K.

When the number of blocks diverges as n increases, the interaction between K, n
min

, n
max

and
�n becomes more complicated. We consider a further special case where all clusters have the same
size: n

max

= n
min

= n/K. Now our separation condition becomes

p� q
p
p

= ⌦

✓
K3/2

(K ^
p
log n)p

n

◆
. (11)

In comparison, the sufficient condition in [7] is

p� q
p
p

= ⌦

✓
K log

2 np
n

◆
, (12)

which is stronger than (11) when K = o(log3 n). For another comparison, the sufficient condition
given in [6] is, provided that q = ⌦(1),

p� q
p
p

= ⌦

✓
K
p
log np
n

◆
, (13)

which is weaker than (12). But the additional assumption q = ⌦(1) implies that ↵n = ⌦(1) =

⌦(log

4 n/n) so (11) can be reduced to the even weaker condition: p�qp
p = ⌦(K3/2/

p
n), which is

weaker than (13) when K = o(log n).

The overall sparsity is not explicitly considered in [7]. However, it is easy to check that (12) cannot
hold when p = a log n/n for some positive constant a. While in this case our condition (11) can
still hold as long as

�n = !

✓
K3/2

(K ^
p
log n)p

log n

◆
,

which is possible if �n = ⌦(1) and K = o
�
(log n)1/4

�
.

4 Numerical Examples

In this section we describe the results of two simulation experiments in order to illustrate the depen-
dence of the performance of the spectral algorithm proposed here on some of the key parameters
used in our analysis.

In the first experiment we consider the same setting used in the simulation study described in [7]:
we generated random graphs according to a planted partition model with K = 5 communities of
equal size 200 and over a regular grid of values for the parameters p � q (we set the side length
of each square in the grid to 1/80). For each choice of the pair (p, q) in the grid we computed
the average Hamming error rate Errn(

ˆ

 , ) given by the proposed algorithm over 10 simulations
of the model. We used the k-means++ subroutine ([3]) to solve the optimization problem (2). For
every simulation we used 4 different starting values and then took the solution giving the minimal
Hamming error rate. Plot (a) in Figure 1 shows the results of the experiment. For each value of p
and q, with p � q, the color of the corresponding square in the grid indicates the average value of
the normalized Hamming distance over the simulations, with darker colors corresponding to small
values and lighter color to larger values. For p < q we set the value to 0. From the figure it is
clear that the smaller the difference p� q the larger the error rate and the worse the performance of
the algorithm, as expected. We can also see that the degradation in the performance is not uniform

7
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Figure 1: Average Hamming error rate over 10 simulations from planted partition models. Left:
n = 1000, K = 5, n

min

= n
max

= 200. Right: n = 500, K = 2.

over p and q and appears to be worse when both p and q are close to 0.5. Finally, there appears to
be a phase transition in the performance of the algorithm as a function of p � q and q: as soon as
the difference p � q crosses a certain value (which seems to depend on q and is maximal around
q = 0.5), the algorithm transitions from having very poor performance to working almost perfectly.
When we visually compare these results with the results from the same experiment based on the
algorithm proposed in [7] (as shown in Figure 1 in that paper), we see that our simpler and faster
algorithm seems to behave very similarly (though, to be fair, in our experiment we use the Hamming
error rate, which gives only approximate recovery, while [7] measures perfect recovery).

In our second experiment, we simulated from a planted partition model with n = 500 and K = 2.
Here we fix q = 0.5 but let p vary from 0.5 to 1 in steps of equal size 1/80 and let n

min

vary 10 to
250 in increments of 10. Just like in the previous experiment, for every choice of (p, q) and n

min

,
we simulated the model 10 times and took the average Hamming error rate Errn(

ˆ

 , ) based on
the best result out of 4 runs of the k-means++ algorithm. Plot (b) in Figure 1 displays the results
using on the same coloring scheme of the previous experiment. It can be seen that, when p and q
are very close to each other, larger values of n

min

will increase the performance of the algorithm
only marginally. But when the gap between p and q widens, small increases in the value of n

min

will greatly boost the performance, as predicted by our analysis. Interestingly, like in the previous
experiment, there also appears to be a phase transition as a function of n

min

and p� q.

5 Discussion

In this work we study the performance of spectral clustering for general stochastic block models.
We have shown that a simple and practical spectral clustering algorithm can give good community
detection even for very sparse models. When the number of blocks is relatively small, the condition
required for (approximate) consistency is weaker than most existing works. The method and argu-
ment presented in this paper are general enough so that they can be refined and/or extended to other
situations. For example, we believe that similar analysis can be carried out for spectral clustering
using graph Laplacians, such as in [20, 6]. On the other hand, one can easily combine the argu-
ments given in this paper and [12] to obtain spectral clustering error bounds for degree corrected
block models. Moreover, one may conjecture that the (K ^

p
log n) term in our error bound may

be replaced by 1 without the additional assumption of ↵n = ⌦(log

4 n/n). This would require a
finer spectral bound of random matrices, perhaps using a different technique. These extensions and
refinements, together with the phase transitions observed in the simulation study, are all interesting
questions and will be pursued in future work.
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Supplementary Material

Keeping track of the constant function c
0

(a, r, ✏)

When ↵n � a log n/n, we have

c
0

(a, r, ✏) =64(2 + ✏) [c̄
1

(a, r) _ c̄
2

(a, r)]
2

, (14)

c̄
1

(a, r) =c⇤

"
2 +

1 + r +
p

(1 + r)2 + 18a(1 + r)

3a

#
1/2

, (15)

c̄
2

(a, r) =1 +

1 + r

3

p
a

+

r
(1 + r)2

9a
+ 2(1 + r) , (16)

where c⇤ is a universal constant that appears in an combinatorial upper bound of the spectral norm
of A� P ([9]).

The case of ↵n � a log4 n/n is very similar and the constant c
0

(a, r, ✏) can be recovered from the
second part of the proof of Lemma 6 below.

Technical proofs

Proof of Theorem 3. We will only prove the case↵n � a log n/n. The other case↵n � a(log n)4/n
can be treated similarly by using a difference spectral bound of kA� Pk.

Define
c(a, r) ⌘ 8max

⇥
(c⇤)2(1 + c

1

(a, r)), (1 + c
2

(a, r))2
⇤
,

where c
1

and c
2

are defined in (21), (22), and c⇤ the universal constant in the proof of Lemma 6.

By Lemmas 5 and 6 we have, for some orthogonal matrix Q and with probability at least 1� 2n�r,

k ˆU � ˜

 Qk2F  c(a, r)K(K ^
p
log n)2

↵n�2n

n

n2

min

.

Now apply Lemma 7 to ˆV =

ˆU and V =

˜

 Q =  X where X = D�1Q with D =

diag(

p
n
1

,
p
n
2

, ...,
p
nK). Denote the (1 + ✏)-approximate solution by ˆ

 

ˆX where ˆ

 2 Mn⇥K

and ˆX 2 RK⇥K .

Recall that in Lemma 7 we define �k = min` 6=k kX`· � Xk·k. In this case, �2k = n�1

k +

min` 6=k n
�1

` � n�1

k because the rows of Q have unit norm and are orthogonal to each other.

Also recall that Sk = {i 2 Gk : k ¯Vi· � Vi·k � �k/2}. Then by (7) in Lemma 7,
KX

k=1

|Sk|
nk


KX

k=1

|Sk|�2k  8(2 + ✏)k ˆV � V k2F  c
0

(a, r, ✏)K(K ^
p
log n)2

↵n�2n

n

n2

min

, (17)

where
c
0

(a, r, ✏) ⌘ 8(2 + ✏)c(a, r) .

According to Lemma 7, one can find a permutation matrix J such that ˆ

 S· =  S·J , where S =

[K
k=1

(Gk\Sk). Then with probability at least 1� 2n�r,

kˆ � Jk2F = kˆ Sc· � Sc·Jk2F 
KX

k=1

2|Sk| 
2c

0

(a, r, ✏)K(K ^
p
log n)2n

max

n

↵n�2nn
2

min

.

Proof of Lemma 5. First we assume that B is positive semidefinite and hence so is P . Write ˆU =

(û
1

, ..., ûK) in the following equivalent optimization formulation.
ˆU =argmax

U

⌦
A,UUT

↵
(18)

s.t. U 2 Rn⇥K , UTU = IK . (19)
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where hX,Y i = trace(XTY ) for matrices X , Y with compatible dimensions.

Then by a result on the curvature of PCA optimization problem (18) at the principal subspace
(Lemma 4.2 and Proposition 2.2 of [23]) we have

k ˆU ˆUT � ˜

 

˜

 

T k2F  2

↵n�nnmin

D
A� P, ˆU ˆUT � ˜

 

˜

 

T
E
. (20)

Now let ⌥ =

ˆU ˆUT�˜

 

˜

 

T

k ˆU ˆUT�˜

 

˜

 

T kF
. Then k⌥kF = 1. By Theorem I.5.5 of [26], we have

⌥ =

KX

`=1

a`(⌘`⌘
T
` � ⌧`⌧

T
` ),

where a` are positive numbers satisfying
PK

`=1

a2` = 1/2 and (⌘
1

, ⌧
1

, ⌘
2

, ⌧
2

, ..., ⌘K , ⌧K) are or-
thonormal vectors in Rn. Then

hA� P,⌥i =
KX

`=1

a`
⇥
⌘T` (A� P )⌘` � ⌧T` (A� P )⌧`

⇤


p
2KkA� Pk.

Combining with (20) we have

k ˆU ˆUT � ˜

 

˜

 

T kF  2

p
2K

↵n�nnmin

kA� Pk .

The desired result follows because by proposition 2.2 of [23], there exists a K dimensional orthog-
onal matrix Q such that

k ˆU � ˜

 QkF  k ˆU ˆUT � ˜

 

˜

 

T kF .

Now consider general matrix B. For any matrix X , let X
aug

=


0 X
XT

0

�
be the augmented

matrix.

According to Lemma 8 and the definition of ˆU , we have

ˆU
aug

⌘
✓

ˆU/
p
2

ˆU⌃K/
p
2

◆
=argmax

U

⌦
A

aug

, UUT
↵

s.t. U 2 R2n⇥K , UTU = IK ,

where ⌃K is the K ⇥K diagonal matrix whose diagonal entries correspond to the signs of the kth
eigenvalue of A, and hX,Y i = trace(XTY ) for matrices X , Y with compatible dimensions. A
similar relationship holds for ˜

 , P
aug

, with matrices ˜

 

aug

and ⌃⇤
K in obvious correspondence.

Then by the same argument we have

k ˆU
aug

ˆUT
aug

� ˜

 

aug

˜

 

T
aug

k2F

 2

↵n�nnmin

D
A

aug

� P
aug

, ˆU
aug

ˆUT
aug

� ˜

 

aug

˜

 

T
aug

E
.

the rest of the proof follows the case of positive definite B and the following fact (Corollary VII.5.6
of [24])

k ˆU � ˜

 k2F  1

2

k ˆU
aug

� ˜

 

aug

k2F .

The following elementary result, which can be directly verified, gives the eigen structure of X
aug

.

Lemma 8. Let X = UDV T be the singular value decomposition of X . Then X
aug

has eigen

decomposition X
aug

=

✓
U/

p
2 U/

p
2

V/
p
2 �V/

p
2

◆✓
D 0

0 �D

◆✓
U/

p
2 U/

p
2

V/
p
2 �V/

p
2

◆
.
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Proof of Lemma 6. We prove two cases separately.
The case of ↵n � a log n/n. Let sj =

P
i 6=j Aij be the degree of node j. Remember that

max

1k,`K b
0

(k, `) = 1. Because ↵n � a log n/n, a standard application of Bernstein’s in-
equality and union bound imply that, for all c > 1,

Pr

✓
max

1jn
sj � c↵nn

◆
Pr

✓
max

1jn
sj � Esj � (c� 1)↵nn

◆

n exp

✓
�

1

2

(c� 1)

2↵2

nn
2

↵nn+

1

3

(c� 1)↵nn

◆

=n⇥ n� 3(c�1)

2

2c�4

↵nn
log n

n⇥ n� 3(c�1)

2

2c�4

a  n�r ,

where the last inequality holds for all c � c
1

(a, r) with

c
1

(a, r) = 1 +

1 + r +
p

(1 + r)2 + 18a(1 + r)

3a
. (21)

Applying Lemma 8.5 of [9], we have for a universal constant c⇤,

Pr

⇣
kA� Pk � c⇤K

p
(1 + c)

p
↵nn

⌘
 n�r.

Next we use matrix Bernstein inequality to prove that Pr(kA � Pk � c
p
n↵n log n)  n�r for

c � 1 + c
2

(a, r), where

c
2

(a, r) =
1 + r

3

p
a

+

r
(1 + r)2

9a
+ 2(1 + r) . (22)

First notice that, since P = E[A] + diag(P ), by the triangle inequality,

kA� Pk = kA� E[A] + diag(P )k  kA� E[A]k+max

i
pi,i  kA� E[A]k+ ↵n.

We will bound the first term. To that end, for i, j 2 [n], we denote with E(i,j) the n⇥n matrix with
all entries set to 0 except for the (i, j)th entry, which is 1. Then,

A� E[A] =

X

i<j

A
(i,j) ⌘

X

i<j

(ai,j � pi,j)(E
(i,j)

+ E(j,i)
),

where we recall that the random variables ai,j ⇠ Bernoulli(pi,j) are mutually independent, for i <
j. Next, it is immediate to see that kA(i,j)k  1 and that E[(A(i,j)

)

2

] = pi,j(1�pi,j)(E
(i,i)

+E(j,j)
).

Since pi,j(1� pi,j)  ↵n, we obtain that
������

X

i<j

E[(A(i,j)
)

2

]

������
 ↵nn .

Then, using the matrix Bernstein inequality (Theorem 1.4 of [21], see also [25]), we have

Pr

⇣
kA� E[A]k � t

⌘
 n exp

⇢
� t2/2

n↵n + t/3

�
. (23)

By assumption, ↵n � a logn
n . Thus, setting t = c

p
n↵n log n, (23) yields

Pr

⇣
kA� E[A]k � c

p
↵nn log n

⌘
 1

nr
,

for c � c
1

(a, r), where c
2

(a, r) is defined as in (22). Thus we have Pr(kA�Pk � c
p
n↵n log n 

n�r
)  n�r for all c � 1 + c

2

(a, r).
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The case of ↵n � a log� n/n, for � � 4. This case can be handled using directly the results of [16].
Write, for simplicity, �n = ↵nn. By Theorem 6 in [16] (whereby in the notation of that paper we
let K = 1), for any C > 0 and � 

�
�n
32

�
1/4

,

Pr

⇣
kA� Pk � 2

p
�n + C�1/4

n log n
⌘
 4n exp

⇢
�� log

✓
1 +

C

2

�

�1/4
n log n

◆�
, (24)

Let c = 32

1/4
(r + 2) � 32

1/4
⇣
r + 1 +

log 4

logn

⌘
under the assumption that n � 4. Since �n �

a(log n)4 for some a > 0, setting C = 2

eca
�1/4

�1

a�1/4 will guarantee that log
⇣
1 +

C
2

�

�1/4
n log n

⌘
�

�

�1/4
n c log n, for all n. Then, following closely the arguments in Lemma 1 and Theorem 6 of [16],

choosing � =

�
�n
32

�
1/4

, yields by (24) that

Pr

⇣
kA� Pk � C 0p↵nn

⌘
 Pr

⇣
kA� Pk � 2

p
�n + C�1/4

n log n
⌘
 1

nr
,

where C 0
= 2 + Ca�1/4. The case of � � 4 follows trivially.

Proof of Lemma 7. First by the definition of ¯V and the fact that V is feasible for problem (2) we
have k ¯V � V k2F  2k ¯V � ˆV k2F + 2k ˆV � V k2F  (4 + 2✏)k ˆV � V k2F . Let Sk = {i 2 Gk :

k ¯Vi· � Vi·k � �k/2}. Then

KX

k=1

|Sk|�2k/4  k ¯V � V k2F  (4 + 2✏)k ˆV � V k2F . (25)

which concludes the first claim of the lemma.

Equation (25) also implies that

|Sk|  (16 + 8✏)k ˆV � V k2F /�2k < |Gk|, 8 k.

Therefore Tk ⌘ Gk\Sk 6= ;. If i 2 Tk and j 2 T` with k 6= `, then ¯Vi· 6= ¯Vj· because otherwise
kVi· � Vj·k  kVi· � ¯Vi·k + kVj· � ¯Vj·k < �k/2 + �`/2, contradicting with the definition of �k
and �`. On the other hand, ¯V has at most K distinct rows. As a result, we must have ¯Vi· = ¯Vj· if
i, j 2 Tk for some k, and ¯Vi· 6= ¯Vj· if i 2 Tk, j 2 T` with k 6= `. This gives a correspondence of
clustering between the rows in ¯VS· and those in VS· where S = [K

k=1

Tk.
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